Merge remote-tracking branch 'ncase/master'

This commit is contained in:
Maxim Lebedev 2020-05-06 16:34:56 +05:00
commit 067658f4e1
No known key found for this signature in database
GPG Key ID: F8978F46FF0FFA4F
7 changed files with 204 additions and 169 deletions

View File

@ -2,19 +2,10 @@
# How To Translate
**NOTE: I'm still editing some stuff! Words will be finalized-ish on May 4th.
You can start on stuff below, then check for new commits on the 4th to see what else to
translate. You're wonderful, thank you! 💖**
**NOTE 2: Sorry these instructions are really sloppy. Am writing this at midnight, rushing
to publish this.**
**NOTE 3: Indie gamedev is horrible.**
Step 1)
Check to see if it's already been translated to your language!
Go to the main site, look at the left sidebar.
Go to the [main site](https://ncase.me/covid-19/), look at the left sidebar.
Step 2)
@ -29,10 +20,11 @@ Translate `words.md`, (6000 words) then export it to html
make sure your Markdown app supports footnotes
and copy-paste that into the `<article></article>` part of `index.html`.
Translate the `<head>`, sidebars, & footer of `index.html` (200 words)
Translate the `<head>`, sidebars, & footer of `index.html` (200 words) **Feel free to add yourself in the header/footer credits as a translator! :)**
Translate the images in `/pics` (800 words)
If you don't have image-editing software, ask for help on the Github Issue!
The fonts are [Open Sans](https://fonts.google.com/specimen/Open+Sans) and [Patrick Hand](https://fonts.google.com/specimen/Patrick+Hand)
Translate `sim/index.html` (100 words)
@ -40,7 +32,7 @@ Translate the thumbnail `sharing/thumbnail.png`
Step 4)
Use Github Pages to put your forked translation live on the interweb!
Use Github Pages to put your forked translation live on the interweb (Go to 'Settings' of your repository page and choose your master branch as your source)!
Step 5)

View File

@ -95,6 +95,10 @@ icon[r]{
background-image: url(../icons/r.png);
}
.nowrap{
white-space: nowrap;
}
p > img{
width: 100%;
border: 1px solid #ddd;

View File

@ -37,15 +37,22 @@
<!-- - - - - - - - - - - - - - - - - - - - - - - -->
<div id="translations">
No translations yet!
Translations:
<ul>
<!-- IF YOU'RE MAKING A TRANSLATION, UN-COMMENT THE NEXT LINE -->
<!-- <li><a href='https://ncase.me/covid-19/'>English (original version)</a></li> -->
<li><a href='https://eed3si9n.github.io/covid-19/'>日本語</a></li>
<li><a href='https://vrruiz.github.io/covid-19'>Español</a></li>
<li><a href='https://jusplathemus.github.io/covid-19/'>Magyar</a></li>
</ul>
<a href='https://github.com/ncase/covid-19#how-to-translate'>
Help make one?
Help make a translation?
</a>
</div>
<div id="sharing">
Help this guide
get R &gt; 1:
get its R &gt; 1:
<br>
<span id='share_title'>
What Happens Next? COVID-19 Futures, Explained With Playable Simulations
@ -119,7 +126,7 @@
<p>It&#39;s estimated that, <em>at the start</em> of a COVID-19 outbreak, the virus jumps from an <icon i></icon> to an <icon s></icon> every 4 days, <em>on average</em>.<sup id="fnref2"><a href="#fn2" rel="footnote">2</a></sup> (remember, there&#39;s a lot of variation)</p>
<p>If we simulate &quot;double every 4 days&quot; <em>and nothing else</em>, on a population starting with just 0.001% <icon i></icon>, what happens? </p>
<p>If we simulate &quot;double every 4 days&quot; <em>and nothing else</em>, on a population starting with just 0.001% <span class="nowrap"><icon i></icon>,</span> what happens? </p>
<p><strong>Click &quot;Start&quot; to play the simulation! You can re-play it later with different settings:</strong> (technical caveats: <sup id="fnref3"><a href="#fn3" rel="footnote">3</a></sup>)</p>
@ -135,7 +142,7 @@
<p><img src="pics/susceptibles.png" alt=""></p>
<p>The more <icon i></icon>s there are, the faster <icon s></icon>s become <icon i></icon>s, <strong>but the fewer <icon s></icon>s there are, the <em>slower</em> <icon s></icon>s become <icon i></icon>s.</strong></p>
<p>The more <span class="nowrap"><icon i></icon>s</span> there are, the faster <span class="nowrap"><icon s></icon>s</span> become <span class="nowrap"><icon i></icon>s,</span> <strong>but the fewer <span class="nowrap"><icon s></icon>s</span> there are, the <em>slower</em> <span class="nowrap"><icon s></icon>s</span> become <span class="nowrap"><icon i></icon>s.</span></strong></p>
<p>How&#39;s this change the growth of an epidemic? Let&#39;s find out:</p>
@ -147,9 +154,9 @@
<p>But, this simulation is <em>still</em> wrong. We&#39;re missing the fact that <icon i></icon> Infectious people eventually stop being infectious, either by 1) recovering, 2) &quot;recovering&quot; with lung damage, or 3) dying.</p>
<p>For simplicity&#39;s sake, let&#39;s pretend that all <icon i></icon> Infectious people become <icon r></icon> Recovered. (Just remember that in reality, some are dead.) <icon r></icon>s can&#39;t be infected again, and let&#39;s pretend <em>for now!</em> that they stay immune for life.</p>
<p>For simplicity&#39;s sake, let&#39;s pretend that all <icon i></icon> Infectious people become <icon r></icon> Recovered. (Just remember that in reality, some are dead.) <span class="nowrap"><icon r></icon>s</span> can&#39;t be infected again, and let&#39;s pretend <em>for now!</em> that they stay immune for life.</p>
<p>With COVID-19, it&#39;s estimated you&#39;re <icon i></icon> Infectious for 10 days, <em>on average</em>.<sup id="fnref4"><a href="#fn4" rel="footnote">4</a></sup> That means some folks will recover before 10 days, some after. <strong>Here&#39;s what that looks like, with a simulation <em>starting</em> with 100% <icon i></icon>:</strong></p>
<p>With COVID-19, it&#39;s estimated you&#39;re <icon i></icon> Infectious for 10 days, <em>on average</em>.<sup id="fnref4"><a href="#fn4" rel="footnote">4</a></sup> That means some folks will recover before 10 days, some after. <strong>Here&#39;s what that looks like, with a simulation <em>starting</em> with 100% <span class="nowrap"><icon i></icon>:</span></strong></p>
<div class="sim">
<iframe src="sim?stage=epi-3" width="800" height="540"></iframe>
@ -163,9 +170,9 @@
<p>Let&#39;s find out.</p>
<p><b style='color:#ff4040'>Red curve</b> is <em>current</em> cases <icon i></icon>,<br>
<b style='color:#999999'>Gray curve</b> is <em>total</em> cases (current + recovered <icon r></icon>),
starts at just 0.001% <icon i></icon>:</p>
<p><b style='color:#ff4040'>Red curve</b> is <em>current</em> cases <span class="nowrap"><icon i></icon>,</span><br>
<b style='color:#999999'>Gray curve</b> is <em>total</em> cases (current + recovered <span class="nowrap"><icon r></icon>),</span>
starts at just 0.001% <span class="nowrap"><icon i></icon>:</span></p>
<div class="sim">
<iframe src="sim?stage=epi-4" width="800" height="540"></iframe>
@ -181,7 +188,7 @@
<p><strong>NOTE: The simulations that inform policy are way, <em>way</em> more sophisticated than this!</strong> But the SIR Model can still explain the same general findings, even if missing the nuances.</p>
<p>Actually, let&#39;s add one more nuance: before an <icon s></icon> becomes an <icon i></icon>, they first become <icon e></icon> Exposed. This is when they have the virus but can&#39;t pass it on yet infect<em>ed</em> but not yet infect<em>ious</em>.</p>
<p>Actually, let&#39;s add one more nuance: before an <icon s></icon> becomes an <span class="nowrap"><icon i></icon>,</span> they first become <icon e></icon> Exposed. This is when they have the virus but can&#39;t pass it on yet infect<em>ed</em> but not yet infect<em>ious</em>.</p>
<p><img src="pics/seir.png" alt=""></p>
@ -189,14 +196,14 @@
<p>For COVID-19, it&#39;s estimated that you&#39;re <icon e></icon> infected-but-not-yet-infectious for 3 days, <em>on average</em>.<sup id="fnref7"><a href="#fn7" rel="footnote">7</a></sup> What happens if we add that to the simulation?</p>
<p><b style='color:#ff4040'>Red <b style='color:#FF9393'>+ Pink</b> curve</b> is <em>current</em> cases (infectious <icon i></icon> + exposed <icon e></icon>),<br>
<b style='color:#888'>Gray curve</b> is <em>total</em> cases (current + recovered <icon r></icon>):</p>
<p><b style='color:#ff4040'>Red <b style='color:#FF9393'>+ Pink</b> curve</b> is <em>current</em> cases (infectious <icon i></icon> + exposed <span class="nowrap"><icon e></icon>),</span><br>
<b style='color:#888'>Gray curve</b> is <em>total</em> cases (current + recovered <span class="nowrap"><icon r></icon>):</span></p>
<div class="sim">
<iframe src="sim?stage=epi-5" width="800" height="540"></iframe>
</div>
<p>Not much changes! How long you stay <icon e></icon> Exposed changes the ratio of <icon e></icon>-to-<icon i></icon>, and <em>when</em> current cases peak... but the <em>height</em> of that peak, and total cases in the end, stays the same.</p>
<p>Not much changes! How long you stay <icon e></icon> Exposed changes the ratio of <span class="nowrap"><icon e></icon>-to-<icon i></icon>,</span> and <em>when</em> current cases peak... but the <em>height</em> of that peak, and total cases in the end, stays the same.</p>
<p>Why&#39;s that? Because of the <em>first</em>-most important idea in Epidemiology 101:</p>
@ -224,7 +231,7 @@
<iframe src="sim?stage=epi-6a&format=calc" width="285" height="255"></iframe>
</div>
<p>But remember, the fewer <icon s></icon>s there are, the <em>slower</em> <icon s></icon>s become <icon i></icon>s. The <em>current</em> reproduction number (R) depends not just on the <em>basic</em> reproduction number (R<sub>0</sub>), but <em>also</em> on how many people are no longer <icon s></icon> Susceptible. (For example, by recovering &amp; getting natural immunity.)</p>
<p>But remember, the fewer <span class="nowrap"><icon s></icon>s</span> there are, the <em>slower</em> <span class="nowrap"><icon s></icon>s</span> become <span class="nowrap"><icon i></icon>s.</span> The <em>current</em> reproduction number (R) depends not just on the <em>basic</em> reproduction number (R<sub>0</sub>), but <em>also</em> on how many people are no longer <icon s></icon> Susceptible. (For example, by recovering &amp; getting natural immunity.)</p>
<div class="sim">
<iframe src="sim?stage=epi-6b&format=calc" width="285" height="390"></iframe>
@ -240,7 +247,7 @@
<p><strong>NOTE: Total cases <em>does not stop</em> at herd immunity, but overshoots it!</strong> And it crosses the threshold <em>exactly</em> when current cases peak. (This happens no matter how you change the settings try it for yourself!)</p>
<p>This is because when there are more non-<icon s></icon>s than the herd immunity threshold, you get R &lt; 1. And when R &lt; 1, new cases stop growing: a peak.</p>
<p>This is because when there are more <span class="nowrap">non-<icon s></icon>s</span> than the herd immunity threshold, you get R &lt; 1. And when R &lt; 1, new cases stop growing: a peak.</p>
<p><strong>If there&#39;s only one lesson you take away from this guide, here it is</strong> it&#39;s an extremely complex diagram so please take time to fully absorb it:</p>
@ -300,7 +307,7 @@
<p>Increased handwashing cuts flus &amp; colds in high-income countries by ~25%<sup id="fnref16"><a href="#fn16" rel="footnote">16</a></sup>, while the city-wide lockdown in London cut close contacts by ~70%<sup id="fnref17"><a href="#fn17" rel="footnote">17</a></sup>. So, let&#39;s assume handwashing can reduce R by <em>up to</em> 25%, and distancing can reduce R by <em>up to</em> 70%:</p>
<p><strong>Play with this calculator to see how % of non-<icon s></icon>, handwashing, and distancing reduce R:</strong> (this calculator visualizes their <em>relative</em> effects, which is why increasing one <em>looks</em> like it decreases the effect of the others.<sup id="fnref18"><a href="#fn18" rel="footnote">18</a></sup>)</p>
<p><strong>Play with this calculator to see how % of <span class="nowrap">non-<icon s></icon>,</span> handwashing, and distancing reduce R:</strong> (this calculator visualizes their <em>relative</em> effects, which is why increasing one <em>looks</em> like it decreases the effect of the others.<sup id="fnref18"><a href="#fn18" rel="footnote">18</a></sup>)</p>
<div class="sim">
<iframe src="sim?stage=int-2a&format=calc" width="285" height="260"></iframe>
@ -336,7 +343,7 @@
<p>Oh.</p>
<p>This is the &quot;second wave&quot; everyone&#39;s talking about. As soon as we remove the lockdown, we get R &gt; 1 again. So, a single leftover <icon i></icon> (or imported <icon i></icon>) can cause a spike in cases that&#39;s almost as bad as if we&#39;d done Scenario 0: Absolutely Nothing.</p>
<p>This is the &quot;second wave&quot; everyone&#39;s talking about. As soon as we remove the lockdown, we get R &gt; 1 again. So, a single leftover <icon i></icon> (or imported <span class="nowrap"><icon i></icon>)</span> can cause a spike in cases that&#39;s almost as bad as if we&#39;d done Scenario 0: Absolutely Nothing.</p>
<p><strong>A lockdown isn&#39;t a cure, it&#39;s just a restart.</strong></p>
@ -388,7 +395,7 @@
<p>This is called <strong>contact tracing</strong>. It&#39;s an old idea, was used at an unprecedented scale to contain Ebola<sup id="fnref23"><a href="#fn23" rel="footnote">23</a></sup>, and now it&#39;s core part of how Taiwan &amp; South Korea are containing COVID-19!</p>
<p>(It also lets us use our limited tests more efficiently, to find pre-symptomatic <icon i></icon>s without needing to test almost everyone.)</p>
<p>(It also lets us use our limited tests more efficiently, to find pre-symptomatic <span class="nowrap"><icon i></icon>s</span> without needing to test almost everyone.)</p>
<p>Traditionally, contacts are found with in-person interviews, but those <em>alone</em> are too slow for COVID-19&#39;s ~48 hour window. That&#39;s why contact tracers need help, and be supported by <em>NOT</em> replaced by contact tracing apps.</p>
@ -402,15 +409,15 @@
<p><img src="pics/dp3t.png" alt=""></p>
<p>(&amp; <a href="https://ncase.me/contact-tracing/">here&#39;s the full comic</a>)</p>
<p>(<a href="https://ncase.me/contact-tracing/">Here&#39;s the full comic</a>. Details about &quot;pranking&quot;/false positives/etc in footnote:<sup id="fnref24"><a href="#fn24" rel="footnote">24</a></sup>)</p>
<p>Along with similar teams like TCN Protocol<sup id="fnref24"><a href="#fn24" rel="footnote">24</a></sup> and MIT PACT<sup id="fnref25"><a href="#fn25" rel="footnote">25</a></sup>, they&#39;ve inspired Apple &amp; Google to bake privacy-first contact tracing directly into Android/iOS.<sup id="fnref26"><a href="#fn26" rel="footnote">26</a></sup> (Don&#39;t trust Google/Apple? Good! The beauty of this system is it doesn&#39;t <em>need</em> trust!) Soon, your local public health agency may ask you to download an app. If it&#39;s privacy-first with publicly-available code, please do!</p>
<p>Along with similar teams like TCN Protocol<sup id="fnref25"><a href="#fn25" rel="footnote">25</a></sup> and MIT PACT<sup id="fnref26"><a href="#fn26" rel="footnote">26</a></sup>, they&#39;ve inspired Apple &amp; Google to bake privacy-first contact tracing directly into Android/iOS.<sup id="fnref27"><a href="#fn27" rel="footnote">27</a></sup> (Don&#39;t trust Google/Apple? Good! The beauty of this system is it doesn&#39;t <em>need</em> trust!) Soon, your local public health agency may ask you to download an app. If it&#39;s privacy-first with publicly-available code, please do!</p>
<p>But what about folks without smartphones? Or infections through doorknobs? Or &quot;true&quot; asymptomatic cases? Contact tracing apps can&#39;t catch all transmissions... <em>and that&#39;s okay!</em> We don&#39;t need to catch <em>all</em> transmissions, just 60%+ to get R &lt; 1.</p>
<p>(Rant about the confusion about pre-symptomatic vs &quot;true&quot; asymptomatic. &quot;True&quot; asymptomatics are rare:<sup id="fnref27"><a href="#fn27" rel="footnote">27</a></sup>)</p>
<p>(Footnote rant about the confusion between pre-symptomatic vs &quot;true&quot; asymptomatic &quot;true&quot; asymptomatics are rare:<sup id="fnref28"><a href="#fn28" rel="footnote">28</a></sup>)</p>
<p>Isolating <em>symptomatic</em> cases would reduce R by up to 40%, and quarantining their <em>pre/a-symptomatic</em> contacts would reduce R by up to 50%<sup id="fnref28"><a href="#fn28" rel="footnote">28</a></sup>:</p>
<p>Isolating <em>symptomatic</em> cases would reduce R by up to 40%, and quarantining their <em>pre/a-symptomatic</em> contacts would reduce R by up to 50%<sup id="fnref29"><a href="#fn29" rel="footnote">29</a></sup>:</p>
<div class="sim">
<iframe src="sim?stage=int-4a&format=calc" width="285" height="340"></iframe>
@ -418,7 +425,7 @@
<p>Thus, even without 100% contact quarantining, we can get R &lt; 1 <em>without a lockdown!</em> Much better for our mental &amp; financial health. (As for the cost to folks who have to self-isolate/quarantine, <em>governments should support them</em> pay for the tests, job protection, subsidized paid leave, etc. Still way cheaper than intermittent lockdown.)</p>
<p>We then keep R &lt; 1 until we have a vaccine, which turns susceptible <icon s></icon>s into immune <icon r></icon>s. Herd immunity, the <em>right</em> way:</p>
<p>We then keep R &lt; 1 until we have a vaccine, which turns susceptible <span class="nowrap"><icon s></icon>s</span> into immune <span class="nowrap"><icon r></icon>s.</span> Herd immunity, the <em>right</em> way:</p>
<div class="sim">
<iframe src="sim?stage=int-4b&format=calc" width="285" height="230"></iframe>
@ -459,17 +466,17 @@
<p><em>&quot;Wait,&quot;</em> you might ask, <em>&quot;I thought face masks don&#39;t stop you from getting sick?&quot;</em></p>
<p>You&#39;re right. Masks don&#39;t stop you from getting sick<sup id="fnref29"><a href="#fn29" rel="footnote">29</a></sup>... they stop you from getting <em>others</em> sick.</p>
<p>You&#39;re right. Masks don&#39;t stop you from getting sick<sup id="fnref30"><a href="#fn30" rel="footnote">30</a></sup>... they stop you from getting <em>others</em> sick.</p>
<p><img src="pics/masks.png" alt=""></p>
<p>To put a number on it: surgical masks <em>on the sick person</em> reduce cold &amp; flu viruses in aerosols by 70%.<sup id="fnref30"><a href="#fn30" rel="footnote">30</a></sup> Reducing transmissions by 70% would be as large an impact as a lockdown!</p>
<p>To put a number on it: surgical masks <em>on the infectious person</em> reduce cold &amp; flu viruses in aerosols by 70%.<sup id="fnref31"><a href="#fn31" rel="footnote">31</a></sup> Reducing transmissions by 70% would be as large an impact as a lockdown!</p>
<p>However, we don&#39;t know for sure the impact of masks on COVID-19 <em>specifically</em>. In science, one should only publish a finding if you&#39;re 95% sure of it. (...should.<sup id="fnref31"><a href="#fn31" rel="footnote">31</a></sup>) Masks, as of May 1st 2020, are less than &quot;95% sure&quot;.</p>
<p>However, we don&#39;t know for sure the impact of masks on COVID-19 <em>specifically</em>. In science, one should only publish a finding if you&#39;re 95% sure of it. (...should.<sup id="fnref32"><a href="#fn32" rel="footnote">32</a></sup>) Masks, as of May 1st 2020, are less than &quot;95% sure&quot;.</p>
<p>However, pandemics are like poker. <strong>Make bets only when you&#39;re 95% sure, and you&#39;ll lose everything at stake.</strong> As a recent article on masks in the British Medical Journal notes,<sup id="fnref32"><a href="#fn32" rel="footnote">32</a></sup> we <em>have</em> to make cost/benefit analyses under uncertainty. Like so:</p>
<p>However, pandemics are like poker. <strong>Make bets only when you&#39;re 95% sure, and you&#39;ll lose everything at stake.</strong> As a recent article on masks in the British Medical Journal notes,<sup id="fnref33"><a href="#fn33" rel="footnote">33</a></sup> we <em>have</em> to make cost/benefit analyses under uncertainty. Like so:</p>
<p>Cost: If homemade cloth masks (which are ~2/3 as effective as surgical masks<sup id="fnref33"><a href="#fn33" rel="footnote">33</a></sup>), super cheap. If surgical masks, more expensive but still pretty cheap.</p>
<p>Cost: If homemade cloth masks (which are ~2/3 as effective as surgical masks<sup id="fnref34"><a href="#fn34" rel="footnote">34</a></sup>), super cheap. If surgical masks, more expensive but still pretty cheap.</p>
<p>Benefit: Even if it&#39;s a 5050 chance of surgical masks reducing transmission by 0% or 70%, the average &quot;expected value&quot; is still 35%, same as a half-lockdown! So let&#39;s guess-timate that surgical masks reduce R by up to 35%, discounted for our uncertainty. (Again, you can challenge our assumptions by turning the sliders up/down)</p>
@ -477,7 +484,7 @@
<iframe src="sim?stage=int-6a&format=calc" width="285" height="380"></iframe>
</div>
<p>(other arguments for/against masks:<sup id="fnref34"><a href="#fn34" rel="footnote">34</a></sup>)</p>
<p>(other arguments for/against masks:<sup id="fnref35"><a href="#fn35" rel="footnote">35</a></sup>)</p>
<p>Masks <em>alone</em> won&#39;t get R &lt; 1. But if handwashing &amp; &quot;Test, Trace, Isolate&quot; only gets us to R = 1.10, having just 1/3 of people wear masks would tip that over to R &lt; 1, virus contained!</p>
@ -485,7 +492,7 @@
<p>Okay, this isn&#39;t an &quot;intervention&quot; we can control, but it will help! Some news outlets report that summer won&#39;t do anything to COVID-19. They&#39;re half right: summer won&#39;t get R &lt; 1, but it <em>will</em> reduce R.</p>
<p>For COVID-19, every extra 1° Celsius (2.2° Fahrenheit) makes R drop by 1.2%.<sup id="fnref35"><a href="#fn35" rel="footnote">35</a></sup> The summer-winter difference in New York City is 15°C (60°F), so summer will make R drop by 18%.</p>
<p>For COVID-19, every extra 1° Celsius (1.8° Fahrenheit) makes R drop by 1.2%.<sup id="fnref36"><a href="#fn36" rel="footnote">36</a></sup> The summer-winter difference in New York City is 26°C (47°F),<sup id="fnref37"><a href="#fn37" rel="footnote">37</a></sup> so summer will make R drop by ~31%.</p>
<div class="sim">
<iframe src="sim?stage=int-6b&format=calc" width="285" height="220"></iframe>
@ -499,7 +506,7 @@
<p>But we wouldn&#39;t have to be 2-months-closed / 1-month-open over &amp; over! Because R is reduced, we&#39;d only need one or two more &quot;circuit breaker&quot; lockdowns before a vaccine is available. (Singapore had to do this recently, &quot;despite&quot; having controlled COVID-19 for 4 months. That&#39;s not failure: this <em>is</em> what success takes.)</p>
<p>Here&#39;s a simulation a &quot;lazy case&quot; scenario:</p>
<p>Here&#39;s a simulation of a &quot;lazy case&quot; scenario:</p>
<ol>
<li>Lockdown, then</li>
@ -545,16 +552,16 @@
<p>...<em>for how long?</em></p>
<ul>
<li>COVID-19 is most closely related to SARS, which gave its survivors 2 years of immunity.<sup id="fnref36"><a href="#fn36" rel="footnote">36</a></sup></li>
<li>The coronaviruses that cause &quot;the&quot; common cold give you 8 months of immunity.<sup id="fnref37"><a href="#fn37" rel="footnote">37</a></sup></li>
<li>There&#39;s reports of folks recovering from COVID-19, then testing positive again, but it&#39;s unclear if these are false positives.<sup id="fnref38"><a href="#fn38" rel="footnote">38</a></sup></li>
<li>One <em>not-yet-peer-reviewed</em> study on monkeys showed immunity to the COVID-19 coronavirus for at least 28 days.<sup id="fnref39"><a href="#fn39" rel="footnote">39</a></sup></li>
<li>COVID-19 is most closely related to SARS, which gave its survivors 2 years of immunity.<sup id="fnref38"><a href="#fn38" rel="footnote">38</a></sup></li>
<li>The coronaviruses that cause &quot;the&quot; common cold give you 8 months of immunity.<sup id="fnref39"><a href="#fn39" rel="footnote">39</a></sup></li>
<li>There&#39;s reports of folks recovering from COVID-19, then testing positive again, but it&#39;s unclear if these are false positives.<sup id="fnref40"><a href="#fn40" rel="footnote">40</a></sup></li>
<li>One <em>not-yet-peer-reviewed</em> study on monkeys showed immunity to the COVID-19 coronavirus for at least 28 days.<sup id="fnref41"><a href="#fn41" rel="footnote">41</a></sup></li>
</ul>
<p>But for COVID-19 <em>in humans</em>, as of May 1st 2020, &quot;how long&quot; is the big unknown.</p>
<p>For these simulations, let&#39;s say it&#39;s 1 year.
<strong>Here&#39;s a simulation starting with 100% <icon r></icon></strong>, exponentially decaying into susceptible, no-immunity <icon s></icon>s after 1 year, on <em>average</em>, with variation:</p>
<strong>Here&#39;s a simulation starting with 100% <span class="nowrap"><icon r></icon></strong>,</span> exponentially decaying into susceptible, no-immunity <span class="nowrap"><icon s></icon>s</span> after 1 year, on <em>average</em>, with variation:</p>
<div class="sim">
<iframe src="sim?stage=yrs-1&format=lines&height=600" width="800" height="600"></iframe>
@ -584,7 +591,7 @@
<p>Oh.</p>
<p>Counterintuitively, summer makes the spikes worse <em>and</em> regular! This is because summer reduces new <icon i></icon>s, but that in turn reduces new immune <icon r></icon>s. Which means immunity plummets in the summer, <em>creating</em> large regular spikes in the winter.</p>
<p>Counterintuitively, summer makes the spikes worse <em>and</em> regular! This is because summer reduces new <span class="nowrap"><icon i></icon>s,</span> but that in turn reduces new immune <span class="nowrap"><icon r></icon>s.</span> Which means immunity plummets in the summer, <em>creating</em> large regular spikes in the winter.</p>
<p>Thankfully, the solution to this is pretty straightforward just vaccinate people every fall/winter, like we do with flu shots:</p>
@ -600,7 +607,7 @@
<p><strong>To be clear: this is unlikely.</strong> Most epidemiologists expect a vaccine in 1 to 2 years. Sure, there&#39;s never been a vaccine for any of the other coronaviruses before, but that&#39;s because SARS was eradicated quickly, and &quot;the&quot; common cold wasn&#39;t worth the investment. </p>
<p>Still, infectious disease researchers have expressed worries: What if we can&#39;t make enough?<sup id="fnref40"><a href="#fn40" rel="footnote">40</a></sup> What if we rush it, and it&#39;s not safe?<sup id="fnref41"><a href="#fn41" rel="footnote">41</a></sup></p>
<p>Still, infectious disease researchers have expressed worries: What if we can&#39;t make enough?<sup id="fnref42"><a href="#fn42" rel="footnote">42</a></sup> What if we rush it, and it&#39;s not safe?<sup id="fnref43"><a href="#fn43" rel="footnote">43</a></sup></p>
<p>Even in the nightmare &quot;no-vaccine&quot; scenario, we still have 3 ways out. From most to least terrible:</p>
@ -639,7 +646,7 @@
</div>
</div>
<p>Plane&#39;s sunk. We&#39;ve scrambled onto the life rafts. It&#39;s time to find dry land.<sup id="fnref42"><a href="#fn42" rel="footnote">42</a></sup></p>
<p>Plane&#39;s sunk. We&#39;ve scrambled onto the life rafts. It&#39;s time to find dry land.<sup id="fnref44"><a href="#fn44" rel="footnote">44</a></sup></p>
<p>Teams of epidemiologists and policymakers (<a href="https://www.americanprogress.org/issues/healthcare/news/2020/04/03/482613/national-state-plan-end-coronavirus-crisis/">left</a>, <a href="https://www.aei.org/research-products/report/national-coronavirus-response-a-road-map-to-reopening/">right</a>, and <a href="https://ethics.harvard.edu/covid-roadmap">multi-partisan</a>) have come to a consensus on how to beat COVID-19, while protecting our lives <em>and</em> liberties.</p>
@ -778,27 +785,35 @@
</li>
<li id="fn24">
<p><a href="https://github.com/TCNCoalition/TCN#tcn-protocol">Temporary Contact Numbers, a decentralized, privacy-first contact tracing protocol</a>&nbsp;<a href="#fnref24" rev="footnote">&#8617;</a></p>
<p>To prevent &quot;pranking&quot; (people falsely claiming to be infected), the DP-3T Protocol requires that the hospital first give you a One-Time Passcode that lets you upload your messages.&nbsp;<a href="#fnref24" rev="footnote">&#8617;</a></p>
<p>False positives are a problem in both manual &amp; digital contact tracing. Still, we can reduce false positives in 2 ways: 1) By notifying Bobs only if they heard, say, 30+ min worth of messages, not just one message in passing. And 2) If the app <em>does</em> think Bob&#39;s been exposed, it can refer Bob to a <em>manual</em> contact tracer, for an in-depth follow-up interview.</p>
<p>For other issues like data bandwidth, source integrity, and other security issues, check out <a href="https://github.com/DP-3T/documents#decentralized-privacy-preserving-proximity-tracing">the open-source DP-3T whitepapers!</a></p>
</li>
<li id="fn25">
<p><a href="https://pact.mit.edu/">PACT: Private Automated Contact Tracing</a>&nbsp;<a href="#fnref25" rev="footnote">&#8617;</a></p>
<p><a href="https://github.com/TCNCoalition/TCN#tcn-protocol">Temporary Contact Numbers, a decentralized, privacy-first contact tracing protocol</a>&nbsp;<a href="#fnref25" rev="footnote">&#8617;</a></p>
</li>
<li id="fn26">
<p><a href="https://www.apple.com/ca/newsroom/2020/04/apple-and-google-partner-on-covid-19-contact-tracing-technology/">Apple and Google partner on COVID-19 contact tracing technology </a>. Note they&#39;re not making the apps <em>themselves</em>, just creating the systems that will <em>support</em> those apps.&nbsp;<a href="#fnref26" rev="footnote">&#8617;</a></p>
<p><a href="https://pact.mit.edu/">PACT: Private Automated Contact Tracing</a>&nbsp;<a href="#fnref26" rev="footnote">&#8617;</a></p>
</li>
<li id="fn27">
<p>Lots of news reports and honestly, many research papers did not distinguish between &quot;cases who showed no symptoms when we tested them&quot; (pre-symptomatic) and &quot;cases who showed no symptoms <em>ever</em>&quot; (true asymptomatic). The only way you could tell the difference is by following up with cases later.&nbsp;<a href="#fnref27" rev="footnote">&#8617;</a></p>
<p><a href="https://www.apple.com/ca/newsroom/2020/04/apple-and-google-partner-on-covid-19-contact-tracing-technology/">Apple and Google partner on COVID-19 contact tracing technology </a>. Note they&#39;re not making the apps <em>themselves</em>, just creating the systems that will <em>support</em> those apps.&nbsp;<a href="#fnref27" rev="footnote">&#8617;</a></p>
</li>
<li id="fn28">
<p>Lots of news reports and honestly, many research papers did not distinguish between &quot;cases who showed no symptoms when we tested them&quot; (pre-symptomatic) and &quot;cases who showed no symptoms <em>ever</em>&quot; (true asymptomatic). The only way you could tell the difference is by following up with cases later.&nbsp;<a href="#fnref28" rev="footnote">&#8617;</a></p>
<p>Which is what <a href="https://wwwnc.cdc.gov/eid/article/26/8/20-1274_article">this study</a> did. (Disclaimer: &quot;Early release articles are not considered as final versions.&quot;) In a call center in South Korea that had a COVID-19 outbreak, &quot;only 4 (1.9%) remained asymptomatic within 14 days of quarantine, and none of their household contacts acquired secondary infections.&quot;</p>
<p>So that means &quot;true asymptomatics&quot; are rare, and catching the disease from a true asymptomatic may be even rarer!</p>
</li>
<li id="fn28">
<p>From the same Oxford study that first recommended apps to fight COVID-19: <a href="https://science.sciencemag.org/content/early/2020/04/09/science.abb6936/tab-figures-data">Luca Ferretti &amp; Chris Wymant et al</a> See Figure 2. Assuming R<sub>0</sub> = 2.0, they found that: &nbsp;<a href="#fnref28" rev="footnote">&#8617;</a></p>
<li id="fn29">
<p>From the same Oxford study that first recommended apps to fight COVID-19: <a href="https://science.sciencemag.org/content/early/2020/04/09/science.abb6936/tab-figures-data">Luca Ferretti &amp; Chris Wymant et al</a> See Figure 2. Assuming R<sub>0</sub> = 2.0, they found that: &nbsp;<a href="#fnref29" rev="footnote">&#8617;</a></p>
<ul>
<li>Symptomatics contribute R = 0.8 (40%)</li>
@ -810,64 +825,68 @@
<p>And add up the pre- &amp; a-symptomatic contacts (45% + 5%) and you get 50% of R!</p>
</li>
<li id="fn29">
<p>“None of these surgical masks exhibited adequate filter performance and facial fit characteristics to be considered respiratory protection devices.” <a href="https://www.sciencedirect.com/science/article/pii/S0196655307007742">Tara Oberg &amp; Lisa M. Brosseau</a>&nbsp;<a href="#fnref29" rev="footnote">&#8617;</a></p>
</li>
<li id="fn30">
<p>The overall 3.4 fold reduction [70% reduction] in aerosol copy numbers we observed combined with a nearly complete elimination of large droplet spray demonstrated by Johnson et al. suggests that surgical masks worn by infected persons could have a clinically significant impact on transmission.” <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591312/">Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ</a>&nbsp;<a href="#fnref30" rev="footnote">&#8617;</a></p>
<p>“None of these surgical masks exhibited adequate filter performance and facial fit characteristics to be considered respiratory protection devices.” <a href="https://www.sciencedirect.com/science/article/pii/S0196655307007742">Tara Oberg &amp; Lisa M. Brosseau</a>&nbsp;<a href="#fnref30" rev="footnote">&#8617;</a></p>
</li>
<li id="fn31">
<p>Any actual scientist who read that last sentence is probably laugh-crying right now. See: <a href="https://en.wikipedia.org/wiki/Data_dredging">p-hacking</a>, <a href="https://en.wikipedia.org/wiki/Replication_crisis">the replication crisis</a>)&nbsp;<a href="#fnref31" rev="footnote">&#8617;</a></p>
<p>“The overall 3.4 fold reduction [70% reduction] in aerosol copy numbers we observed combined with a nearly complete elimination of large droplet spray demonstrated by Johnson et al. suggests that surgical masks worn by infected persons could have a clinically significant impact on transmission.” <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591312/">Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ</a>&nbsp;<a href="#fnref31" rev="footnote">&#8617;</a></p>
</li>
<li id="fn32">
<p>“It is time to apply the precautionary principle” <a href="https://www.bmj.com/content/bmj/369/bmj.m1435.full.pdf">Trisha Greenhalgh et al [PDF]</a>&nbsp;<a href="#fnref32" rev="footnote">&#8617;</a></p>
<p>Any actual scientist who read that last sentence is probably laugh-crying right now. See: <a href="https://en.wikipedia.org/wiki/Data_dredging">p-hacking</a>, <a href="https://en.wikipedia.org/wiki/Replication_crisis">the replication crisis</a>)&nbsp;<a href="#fnref32" rev="footnote">&#8617;</a></p>
</li>
<li id="fn33">
<p><a href="https://www.cambridge.org/core/journals/disaster-medicine-and-public-health-preparedness/article/testing-the-efficacy-of-homemade-masks-would-they-protect-in-an-influenza-pandemic/0921A05A69A9419C862FA2F35F819D55">Davies, A., Thompson, K., Giri, K., Kafatos, G., Walker, J., &amp; Bennett, A</a> See Table 1: a 100% cotton T-shirt has around 2/3 the filtration efficiency as a surgical mask, for the two bacterial aerosols they tested.&nbsp;<a href="#fnref33" rev="footnote">&#8617;</a></p>
<p>“It is time to apply the precautionary principle” <a href="https://www.bmj.com/content/bmj/369/bmj.m1435.full.pdf">Trisha Greenhalgh et al [PDF]</a>&nbsp;<a href="#fnref33" rev="footnote">&#8617;</a></p>
</li>
<li id="fn34">
<p><strong>&quot;We need to save supplies for hospitals.&quot;</strong> <em>Absolutely agreed.</em> But that&#39;s more of an argument for increasing mask production, not rationing. In the meantime, we can make cloth masks.&nbsp;<a href="#fnref34" rev="footnote">&#8617;</a></p>
<p><a href="https://www.cambridge.org/core/journals/disaster-medicine-and-public-health-preparedness/article/testing-the-efficacy-of-homemade-masks-would-they-protect-in-an-influenza-pandemic/0921A05A69A9419C862FA2F35F819D55">Davies, A., Thompson, K., Giri, K., Kafatos, G., Walker, J., &amp; Bennett, A</a> See Table 1: a 100% cotton T-shirt has around 2/3 the filtration efficiency as a surgical mask, for the two bacterial aerosols they tested.&nbsp;<a href="#fnref34" rev="footnote">&#8617;</a></p>
</li>
<li id="fn35">
<p><strong>&quot;We need to save supplies for hospitals.&quot;</strong> <em>Absolutely agreed.</em> But that&#39;s more of an argument for increasing mask production, not rationing. In the meantime, we can make cloth masks.&nbsp;<a href="#fnref35" rev="footnote">&#8617;</a></p>
<p><strong>&quot;They&#39;re hard to wear correctly.&quot;</strong> It&#39;s also hard to wash your hands according to the WHO Guidelines seriously, &quot;Step 3) right palm over left dorsum&quot;?! but we still recommend handwashing, because imperfect is still better than nothing.</p>
<p><strong>&quot;It&#39;ll make people more reckless with handwashing &amp; social distancing.&quot;</strong> Sure, and safety belts make people ignore stop signs, and flossing makes people eat rocks. But seriously, we&#39;d argue the opposite: masks are a <em>constant physical reminder</em> to be careful and in East Asia, masks are also a symbol of solidarity!</p>
</li>
<li id="fn35">
<p>“One-degree Celsius increase in temperature [...] lower[s] R by 0.0225” and “The average R-value of these 100 cities is 1.83”. 0.0225 ÷ 1.83 = ~1.2%. <a href="https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3551767">Wang, Jingyuan and Tang, Ke and Feng, Kai and Lv, Weifeng</a>&nbsp;<a href="#fnref35" rev="footnote">&#8617;</a></p>
</li>
<li id="fn36">
<p>SARS-specific antibodies were maintained for an average of 2 years [...] Thus, SARS patients might be susceptible to reinfection ≥3 years after initial exposure.” <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851497/">Wu LP, Wang NC, Chang YH, et al.</a> &quot;Sadly&quot; we&#39;ll never know how long SARS immunity would have really lasted, since we eradicated it so quickly.&nbsp;<a href="#fnref36" rev="footnote">&#8617;</a></p>
<p>“One-degree Celsius increase in temperature [...] lower[s] R by 0.0225” and “The average R-value of these 100 cities is 1.83”. 0.0225 ÷ 1.83 = ~1.2%. <a href="https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3551767">Wang, Jingyuan and Tang, Ke and Feng, Kai and Lv, Weifeng</a>&nbsp;<a href="#fnref36" rev="footnote">&#8617;</a></p>
</li>
<li id="fn37">
<p>“We found no significant difference between the probability of testing positive at least once and the probability of a recurrence for the beta-coronaviruses HKU1 and OC43 at 34 weeks after enrollment/first infection.” <a href="http://www.columbia.edu/%7Ejls106/galanti_shaman_ms_supp.pdf">Marta Galanti &amp; Jeffrey Shaman (PDF)</a>&nbsp;<a href="#fnref37" rev="footnote">&#8617;</a></p>
<p>In 2019 at Central Park, hottest month (July) was 79.6°F, coldest month (Jan) was 32.5°F. Difference is 47.1°F, or ~26°C. <a href="https://www.weather.gov/media/okx/Climate/CentralPark/monthlyannualtemp.pdf">PDF from Weather.gov</a>&nbsp;<a href="#fnref37" rev="footnote">&#8617;</a></p>
</li>
<li id="fn38">
<p>Once a person fights off a virus, viral particles tend to linger for some time. These cannot cause infections, but they can trigger a positive test.” <a href="https://www.statnews.com/2020/04/20/everything-we-know-about-coronavirus-immunity-and-antibodies-and-plenty-we-still-dont/">from STAT News by Andrew Joseph</a>&nbsp;<a href="#fnref38" rev="footnote">&#8617;</a></p>
<p>SARS-specific antibodies were maintained for an average of 2 years [...] Thus, SARS patients might be susceptible to reinfection ≥3 years after initial exposure.” <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851497/">Wu LP, Wang NC, Chang YH, et al.</a> &quot;Sadly&quot; we&#39;ll never know how long SARS immunity would have really lasted, since we eradicated it so quickly.&nbsp;<a href="#fnref38" rev="footnote">&#8617;</a></p>
</li>
<li id="fn39">
<p>From <a href="https://www.biorxiv.org/content/10.1101/2020.03.13.990226v1.abstract">Bao et al.</a> <em>Disclaimer: This article is a preprint and has not been certified by peer review (yet).</em> Also, to emphasize: they only tested re-infection 28 days later. &nbsp;<a href="#fnref39" rev="footnote">&#8617;</a></p>
<p>“We found no significant difference between the probability of testing positive at least once and the probability of a recurrence for the beta-coronaviruses HKU1 and OC43 at 34 weeks after enrollment/first infection.” <a href="http://www.columbia.edu/%7Ejls106/galanti_shaman_ms_supp.pdf">Marta Galanti &amp; Jeffrey Shaman (PDF)</a>&nbsp;<a href="#fnref39" rev="footnote">&#8617;</a></p>
</li>
<li id="fn40">
<p>If a coronavirus vaccine arrives, can the world make enough?” <a href="https://www.nature.com/articles/d41586-020-01063-8">by Roxanne Khamsi, on Nature</a>&nbsp;<a href="#fnref40" rev="footnote">&#8617;</a></p>
<p>Once a person fights off a virus, viral particles tend to linger for some time. These cannot cause infections, but they can trigger a positive test.” <a href="https://www.statnews.com/2020/04/20/everything-we-know-about-coronavirus-immunity-and-antibodies-and-plenty-we-still-dont/">from STAT News by Andrew Joseph</a>&nbsp;<a href="#fnref40" rev="footnote">&#8617;</a></p>
</li>
<li id="fn41">
<p>“Dont rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees” <a href="https://www.nature.com/articles/d41586-020-00751-9">by Shibo Jiang, on Nature</a>&nbsp;<a href="#fnref41" rev="footnote">&#8617;</a></p>
<p>From <a href="https://www.biorxiv.org/content/10.1101/2020.03.13.990226v1.abstract">Bao et al.</a> <em>Disclaimer: This article is a preprint and has not been certified by peer review (yet).</em> Also, to emphasize: they only tested re-infection 28 days later. &nbsp;<a href="#fnref41" rev="footnote">&#8617;</a></p>
</li>
<li id="fn42">
<p>Dry land metaphor <a href="https://www.statnews.com/2020/04/01/navigating-covid-19-pandemic/">from Marc Lipsitch &amp; Yonatan Grad, on STAT News</a>&nbsp;<a href="#fnref42" rev="footnote">&#8617;</a></p>
<p>“If a coronavirus vaccine arrives, can the world make enough?” <a href="https://www.nature.com/articles/d41586-020-01063-8">by Roxanne Khamsi, on Nature</a>&nbsp;<a href="#fnref42" rev="footnote">&#8617;</a></p>
</li>
<li id="fn43">
<p>“Dont rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees” <a href="https://www.nature.com/articles/d41586-020-00751-9">by Shibo Jiang, on Nature</a>&nbsp;<a href="#fnref43" rev="footnote">&#8617;</a></p>
</li>
<li id="fn44">
<p>Dry land metaphor <a href="https://www.statnews.com/2020/04/01/navigating-covid-19-pandemic/">from Marc Lipsitch &amp; Yonatan Grad, on STAT News</a>&nbsp;<a href="#fnref44" rev="footnote">&#8617;</a></p>
</li>
</ol>
@ -883,7 +902,7 @@
<div>
Help this post get R > 1: <span class='shareables in_footer' style='position: relative; top: 17px; right: -6px;'></span>
Help this post get its R > 1: <span class='shareables in_footer' style='position: relative; top: 17px; right: -6px;'></span>
<br><br>
This guide is
<br>

View File

@ -96,7 +96,7 @@
<br>
</span>
<span id="int_block_4">
Лето
Сила лета
<br>
<input class="sim_input recordable" type="range" id="p_summer" min="0" max="1" step="0.001" value="0">
<br>

View File

@ -25,8 +25,8 @@ let interventionStrengths = [
['distancing', 0.7],
['isolate', 0.4],
['quarantine', 0.5],
['masks', 0.35], // 3.4 fold reduction (70%) (what CI?), subtract points for... improper usage? https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591312/ // cloth masks...
['summer', 0.4] // 15°C diff * 0.0225 (Wang et al)
['masks', 0.35],
['summer', 0.31] // ACK
];
let updateModel = (days, fake)=>{

View File

@ -69,7 +69,7 @@
<p>It&#39;s estimated that, <em>at the start</em> of a COVID-19 outbreak, the virus jumps from an <icon i></icon> to an <icon s></icon> every 4 days, <em>on average</em>.<sup id="fnref2"><a href="#fn2" rel="footnote">2</a></sup> (remember, there&#39;s a lot of variation)</p>
<p>If we simulate &quot;double every 4 days&quot; <em>and nothing else</em>, on a population starting with just 0.001% <icon i></icon>, what happens? </p>
<p>If we simulate &quot;double every 4 days&quot; <em>and nothing else</em>, on a population starting with just 0.001% <span class="nowrap"><icon i></icon>,</span> what happens? </p>
<p><strong>Click &quot;Start&quot; to play the simulation! You can re-play it later with different settings:</strong> (technical caveats: <sup id="fnref3"><a href="#fn3" rel="footnote">3</a></sup>)</p>
@ -85,7 +85,7 @@
<p><img src="pics/susceptibles.png" alt=""></p>
<p>The more <icon i></icon>s there are, the faster <icon s></icon>s become <icon i></icon>s, <strong>but the fewer <icon s></icon>s there are, the <em>slower</em> <icon s></icon>s become <icon i></icon>s.</strong></p>
<p>The more <span class="nowrap"><icon i></icon>s</span> there are, the faster <span class="nowrap"><icon s></icon>s</span> become <span class="nowrap"><icon i></icon>s,</span> <strong>but the fewer <span class="nowrap"><icon s></icon>s</span> there are, the <em>slower</em> <span class="nowrap"><icon s></icon>s</span> become <span class="nowrap"><icon i></icon>s.</span></strong></p>
<p>How&#39;s this change the growth of an epidemic? Let&#39;s find out:</p>
@ -97,9 +97,9 @@
<p>But, this simulation is <em>still</em> wrong. We&#39;re missing the fact that <icon i></icon> Infectious people eventually stop being infectious, either by 1) recovering, 2) &quot;recovering&quot; with lung damage, or 3) dying.</p>
<p>For simplicity&#39;s sake, let&#39;s pretend that all <icon i></icon> Infectious people become <icon r></icon> Recovered. (Just remember that in reality, some are dead.) <icon r></icon>s can&#39;t be infected again, and let&#39;s pretend <em>for now!</em> that they stay immune for life.</p>
<p>For simplicity&#39;s sake, let&#39;s pretend that all <icon i></icon> Infectious people become <icon r></icon> Recovered. (Just remember that in reality, some are dead.) <span class="nowrap"><icon r></icon>s</span> can&#39;t be infected again, and let&#39;s pretend <em>for now!</em> that they stay immune for life.</p>
<p>With COVID-19, it&#39;s estimated you&#39;re <icon i></icon> Infectious for 10 days, <em>on average</em>.<sup id="fnref4"><a href="#fn4" rel="footnote">4</a></sup> That means some folks will recover before 10 days, some after. <strong>Here&#39;s what that looks like, with a simulation <em>starting</em> with 100% <icon i></icon>:</strong></p>
<p>With COVID-19, it&#39;s estimated you&#39;re <icon i></icon> Infectious for 10 days, <em>on average</em>.<sup id="fnref4"><a href="#fn4" rel="footnote">4</a></sup> That means some folks will recover before 10 days, some after. <strong>Here&#39;s what that looks like, with a simulation <em>starting</em> with 100% <span class="nowrap"><icon i></icon>:</span></strong></p>
<div class="sim">
<iframe src="sim?stage=epi-3" width="800" height="540"></iframe>
@ -113,9 +113,9 @@
<p>Let&#39;s find out.</p>
<p><b style='color:#ff4040'>Red curve</b> is <em>current</em> cases <icon i></icon>,<br>
<b style='color:#999999'>Gray curve</b> is <em>total</em> cases (current + recovered <icon r></icon>),
starts at just 0.001% <icon i></icon>:</p>
<p><b style='color:#ff4040'>Red curve</b> is <em>current</em> cases <span class="nowrap"><icon i></icon>,</span><br>
<b style='color:#999999'>Gray curve</b> is <em>total</em> cases (current + recovered <span class="nowrap"><icon r></icon>),</span>
starts at just 0.001% <span class="nowrap"><icon i></icon>:</span></p>
<div class="sim">
<iframe src="sim?stage=epi-4" width="800" height="540"></iframe>
@ -131,7 +131,7 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<p><strong>NOTE: The simulations that inform policy are way, <em>way</em> more sophisticated than this!</strong> But the SIR Model can still explain the same general findings, even if missing the nuances.</p>
<p>Actually, let&#39;s add one more nuance: before an <icon s></icon> becomes an <icon i></icon>, they first become <icon e></icon> Exposed. This is when they have the virus but can&#39;t pass it on yet infect<em>ed</em> but not yet infect<em>ious</em>.</p>
<p>Actually, let&#39;s add one more nuance: before an <icon s></icon> becomes an <span class="nowrap"><icon i></icon>,</span> they first become <icon e></icon> Exposed. This is when they have the virus but can&#39;t pass it on yet infect<em>ed</em> but not yet infect<em>ious</em>.</p>
<p><img src="pics/seir.png" alt=""></p>
@ -139,14 +139,14 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<p>For COVID-19, it&#39;s estimated that you&#39;re <icon e></icon> infected-but-not-yet-infectious for 3 days, <em>on average</em>.<sup id="fnref7"><a href="#fn7" rel="footnote">7</a></sup> What happens if we add that to the simulation?</p>
<p><b style='color:#ff4040'>Red <b style='color:#FF9393'>+ Pink</b> curve</b> is <em>current</em> cases (infectious <icon i></icon> + exposed <icon e></icon>),<br>
<b style='color:#888'>Gray curve</b> is <em>total</em> cases (current + recovered <icon r></icon>):</p>
<p><b style='color:#ff4040'>Red <b style='color:#FF9393'>+ Pink</b> curve</b> is <em>current</em> cases (infectious <icon i></icon> + exposed <span class="nowrap"><icon e></icon>),</span><br>
<b style='color:#888'>Gray curve</b> is <em>total</em> cases (current + recovered <span class="nowrap"><icon r></icon>):</span></p>
<div class="sim">
<iframe src="sim?stage=epi-5" width="800" height="540"></iframe>
</div>
<p>Not much changes! How long you stay <icon e></icon> Exposed changes the ratio of <icon e></icon>-to-<icon i></icon>, and <em>when</em> current cases peak... but the <em>height</em> of that peak, and total cases in the end, stays the same.</p>
<p>Not much changes! How long you stay <icon e></icon> Exposed changes the ratio of <span class="nowrap"><icon e></icon>-to-<icon i></icon>,</span> and <em>when</em> current cases peak... but the <em>height</em> of that peak, and total cases in the end, stays the same.</p>
<p>Why&#39;s that? Because of the <em>first</em>-most important idea in Epidemiology 101:</p>
@ -174,7 +174,7 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<iframe src="sim?stage=epi-6a&format=calc" width="285" height="255"></iframe>
</div>
<p>But remember, the fewer <icon s></icon>s there are, the <em>slower</em> <icon s></icon>s become <icon i></icon>s. The <em>current</em> reproduction number (R) depends not just on the <em>basic</em> reproduction number (R<sub>0</sub>), but <em>also</em> on how many people are no longer <icon s></icon> Susceptible. (For example, by recovering &amp; getting natural immunity.)</p>
<p>But remember, the fewer <span class="nowrap"><icon s></icon>s</span> there are, the <em>slower</em> <span class="nowrap"><icon s></icon>s</span> become <span class="nowrap"><icon i></icon>s.</span> The <em>current</em> reproduction number (R) depends not just on the <em>basic</em> reproduction number (R<sub>0</sub>), but <em>also</em> on how many people are no longer <icon s></icon> Susceptible. (For example, by recovering &amp; getting natural immunity.)</p>
<div class="sim">
<iframe src="sim?stage=epi-6b&format=calc" width="285" height="390"></iframe>
@ -190,7 +190,7 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<p><strong>NOTE: Total cases <em>does not stop</em> at herd immunity, but overshoots it!</strong> And it crosses the threshold <em>exactly</em> when current cases peak. (This happens no matter how you change the settings try it for yourself!)</p>
<p>This is because when there are more non-<icon s></icon>s than the herd immunity threshold, you get R &lt; 1. And when R &lt; 1, new cases stop growing: a peak.</p>
<p>This is because when there are more <span class="nowrap">non-<icon s></icon>s</span> than the herd immunity threshold, you get R &lt; 1. And when R &lt; 1, new cases stop growing: a peak.</p>
<p><strong>If there&#39;s only one lesson you take away from this guide, here it is</strong> it&#39;s an extremely complex diagram so please take time to fully absorb it:</p>
@ -250,7 +250,7 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<p>Increased handwashing cuts flus &amp; colds in high-income countries by ~25%<sup id="fnref16"><a href="#fn16" rel="footnote">16</a></sup>, while the city-wide lockdown in London cut close contacts by ~70%<sup id="fnref17"><a href="#fn17" rel="footnote">17</a></sup>. So, let&#39;s assume handwashing can reduce R by <em>up to</em> 25%, and distancing can reduce R by <em>up to</em> 70%:</p>
<p><strong>Play with this calculator to see how % of non-<icon s></icon>, handwashing, and distancing reduce R:</strong> (this calculator visualizes their <em>relative</em> effects, which is why increasing one <em>looks</em> like it decreases the effect of the others.<sup id="fnref18"><a href="#fn18" rel="footnote">18</a></sup>)</p>
<p><strong>Play with this calculator to see how % of <span class="nowrap">non-<icon s></icon>,</span> handwashing, and distancing reduce R:</strong> (this calculator visualizes their <em>relative</em> effects, which is why increasing one <em>looks</em> like it decreases the effect of the others.<sup id="fnref18"><a href="#fn18" rel="footnote">18</a></sup>)</p>
<div class="sim">
<iframe src="sim?stage=int-2a&format=calc" width="285" height="260"></iframe>
@ -286,7 +286,7 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<p>Oh.</p>
<p>This is the &quot;second wave&quot; everyone&#39;s talking about. As soon as we remove the lockdown, we get R &gt; 1 again. So, a single leftover <icon i></icon> (or imported <icon i></icon>) can cause a spike in cases that&#39;s almost as bad as if we&#39;d done Scenario 0: Absolutely Nothing.</p>
<p>This is the &quot;second wave&quot; everyone&#39;s talking about. As soon as we remove the lockdown, we get R &gt; 1 again. So, a single leftover <icon i></icon> (or imported <span class="nowrap"><icon i></icon>)</span> can cause a spike in cases that&#39;s almost as bad as if we&#39;d done Scenario 0: Absolutely Nothing.</p>
<p><strong>A lockdown isn&#39;t a cure, it&#39;s just a restart.</strong></p>
@ -338,7 +338,7 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<p>This is called <strong>contact tracing</strong>. It&#39;s an old idea, was used at an unprecedented scale to contain Ebola<sup id="fnref23"><a href="#fn23" rel="footnote">23</a></sup>, and now it&#39;s core part of how Taiwan &amp; South Korea are containing COVID-19!</p>
<p>(It also lets us use our limited tests more efficiently, to find pre-symptomatic <icon i></icon>s without needing to test almost everyone.)</p>
<p>(It also lets us use our limited tests more efficiently, to find pre-symptomatic <span class="nowrap"><icon i></icon>s</span> without needing to test almost everyone.)</p>
<p>Traditionally, contacts are found with in-person interviews, but those <em>alone</em> are too slow for COVID-19&#39;s ~48 hour window. That&#39;s why contact tracers need help, and be supported by <em>NOT</em> replaced by contact tracing apps.</p>
@ -352,15 +352,15 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<p><img src="pics/dp3t.png" alt=""></p>
<p>(&amp; <a href="https://ncase.me/contact-tracing/">here&#39;s the full comic</a>)</p>
<p>(<a href="https://ncase.me/contact-tracing/">Here&#39;s the full comic</a>. Details about &quot;pranking&quot;/false positives/etc in footnote:<sup id="fnref24"><a href="#fn24" rel="footnote">24</a></sup>)</p>
<p>Along with similar teams like TCN Protocol<sup id="fnref24"><a href="#fn24" rel="footnote">24</a></sup> and MIT PACT<sup id="fnref25"><a href="#fn25" rel="footnote">25</a></sup>, they&#39;ve inspired Apple &amp; Google to bake privacy-first contact tracing directly into Android/iOS.<sup id="fnref26"><a href="#fn26" rel="footnote">26</a></sup> (Don&#39;t trust Google/Apple? Good! The beauty of this system is it doesn&#39;t <em>need</em> trust!) Soon, your local public health agency may ask you to download an app. If it&#39;s privacy-first with publicly-available code, please do!</p>
<p>Along with similar teams like TCN Protocol<sup id="fnref25"><a href="#fn25" rel="footnote">25</a></sup> and MIT PACT<sup id="fnref26"><a href="#fn26" rel="footnote">26</a></sup>, they&#39;ve inspired Apple &amp; Google to bake privacy-first contact tracing directly into Android/iOS.<sup id="fnref27"><a href="#fn27" rel="footnote">27</a></sup> (Don&#39;t trust Google/Apple? Good! The beauty of this system is it doesn&#39;t <em>need</em> trust!) Soon, your local public health agency may ask you to download an app. If it&#39;s privacy-first with publicly-available code, please do!</p>
<p>But what about folks without smartphones? Or infections through doorknobs? Or &quot;true&quot; asymptomatic cases? Contact tracing apps can&#39;t catch all transmissions... <em>and that&#39;s okay!</em> We don&#39;t need to catch <em>all</em> transmissions, just 60%+ to get R &lt; 1.</p>
<p>(Rant about the confusion about pre-symptomatic vs &quot;true&quot; asymptomatic. &quot;True&quot; asymptomatics are rare:<sup id="fnref27"><a href="#fn27" rel="footnote">27</a></sup>)</p>
<p>(Footnote rant about the confusion between pre-symptomatic vs &quot;true&quot; asymptomatic &quot;true&quot; asymptomatics are rare:<sup id="fnref28"><a href="#fn28" rel="footnote">28</a></sup>)</p>
<p>Isolating <em>symptomatic</em> cases would reduce R by up to 40%, and quarantining their <em>pre/a-symptomatic</em> contacts would reduce R by up to 50%<sup id="fnref28"><a href="#fn28" rel="footnote">28</a></sup>:</p>
<p>Isolating <em>symptomatic</em> cases would reduce R by up to 40%, and quarantining their <em>pre/a-symptomatic</em> contacts would reduce R by up to 50%<sup id="fnref29"><a href="#fn29" rel="footnote">29</a></sup>:</p>
<div class="sim">
<iframe src="sim?stage=int-4a&format=calc" width="285" height="340"></iframe>
@ -368,7 +368,7 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<p>Thus, even without 100% contact quarantining, we can get R &lt; 1 <em>without a lockdown!</em> Much better for our mental &amp; financial health. (As for the cost to folks who have to self-isolate/quarantine, <em>governments should support them</em> pay for the tests, job protection, subsidized paid leave, etc. Still way cheaper than intermittent lockdown.)</p>
<p>We then keep R &lt; 1 until we have a vaccine, which turns susceptible <icon s></icon>s into immune <icon r></icon>s. Herd immunity, the <em>right</em> way:</p>
<p>We then keep R &lt; 1 until we have a vaccine, which turns susceptible <span class="nowrap"><icon s></icon>s</span> into immune <span class="nowrap"><icon r></icon>s.</span> Herd immunity, the <em>right</em> way:</p>
<div class="sim">
<iframe src="sim?stage=int-4b&format=calc" width="285" height="230"></iframe>
@ -409,17 +409,17 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<p><em>&quot;Wait,&quot;</em> you might ask, <em>&quot;I thought face masks don&#39;t stop you from getting sick?&quot;</em></p>
<p>You&#39;re right. Masks don&#39;t stop you from getting sick<sup id="fnref29"><a href="#fn29" rel="footnote">29</a></sup>... they stop you from getting <em>others</em> sick.</p>
<p>You&#39;re right. Masks don&#39;t stop you from getting sick<sup id="fnref30"><a href="#fn30" rel="footnote">30</a></sup>... they stop you from getting <em>others</em> sick.</p>
<p><img src="pics/masks.png" alt=""></p>
<p>To put a number on it: surgical masks <em>on the sick person</em> reduce cold &amp; flu viruses in aerosols by 70%.<sup id="fnref30"><a href="#fn30" rel="footnote">30</a></sup> Reducing transmissions by 70% would be as large an impact as a lockdown!</p>
<p>To put a number on it: surgical masks <em>on the infectious person</em> reduce cold &amp; flu viruses in aerosols by 70%.<sup id="fnref31"><a href="#fn31" rel="footnote">31</a></sup> Reducing transmissions by 70% would be as large an impact as a lockdown!</p>
<p>However, we don&#39;t know for sure the impact of masks on COVID-19 <em>specifically</em>. In science, one should only publish a finding if you&#39;re 95% sure of it. (...should.<sup id="fnref31"><a href="#fn31" rel="footnote">31</a></sup>) Masks, as of May 1st 2020, are less than &quot;95% sure&quot;.</p>
<p>However, we don&#39;t know for sure the impact of masks on COVID-19 <em>specifically</em>. In science, one should only publish a finding if you&#39;re 95% sure of it. (...should.<sup id="fnref32"><a href="#fn32" rel="footnote">32</a></sup>) Masks, as of May 1st 2020, are less than &quot;95% sure&quot;.</p>
<p>However, pandemics are like poker. <strong>Make bets only when you&#39;re 95% sure, and you&#39;ll lose everything at stake.</strong> As a recent article on masks in the British Medical Journal notes,<sup id="fnref32"><a href="#fn32" rel="footnote">32</a></sup> we <em>have</em> to make cost/benefit analyses under uncertainty. Like so:</p>
<p>However, pandemics are like poker. <strong>Make bets only when you&#39;re 95% sure, and you&#39;ll lose everything at stake.</strong> As a recent article on masks in the British Medical Journal notes,<sup id="fnref33"><a href="#fn33" rel="footnote">33</a></sup> we <em>have</em> to make cost/benefit analyses under uncertainty. Like so:</p>
<p>Cost: If homemade cloth masks (which are ~2/3 as effective as surgical masks<sup id="fnref33"><a href="#fn33" rel="footnote">33</a></sup>), super cheap. If surgical masks, more expensive but still pretty cheap.</p>
<p>Cost: If homemade cloth masks (which are ~2/3 as effective as surgical masks<sup id="fnref34"><a href="#fn34" rel="footnote">34</a></sup>), super cheap. If surgical masks, more expensive but still pretty cheap.</p>
<p>Benefit: Even if it&#39;s a 5050 chance of surgical masks reducing transmission by 0% or 70%, the average &quot;expected value&quot; is still 35%, same as a half-lockdown! So let&#39;s guess-timate that surgical masks reduce R by up to 35%, discounted for our uncertainty. (Again, you can challenge our assumptions by turning the sliders up/down)</p>
@ -427,7 +427,7 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<iframe src="sim?stage=int-6a&format=calc" width="285" height="380"></iframe>
</div>
<p>(other arguments for/against masks:<sup id="fnref34"><a href="#fn34" rel="footnote">34</a></sup>)</p>
<p>(other arguments for/against masks:<sup id="fnref35"><a href="#fn35" rel="footnote">35</a></sup>)</p>
<p>Masks <em>alone</em> won&#39;t get R &lt; 1. But if handwashing &amp; &quot;Test, Trace, Isolate&quot; only gets us to R = 1.10, having just 1/3 of people wear masks would tip that over to R &lt; 1, virus contained!</p>
@ -435,7 +435,7 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<p>Okay, this isn&#39;t an &quot;intervention&quot; we can control, but it will help! Some news outlets report that summer won&#39;t do anything to COVID-19. They&#39;re half right: summer won&#39;t get R &lt; 1, but it <em>will</em> reduce R.</p>
<p>For COVID-19, every extra 1° Celsius (2.2° Fahrenheit) makes R drop by 1.2%.<sup id="fnref35"><a href="#fn35" rel="footnote">35</a></sup> The summer-winter difference in New York City is 15°C (60°F), so summer will make R drop by 18%.</p>
<p>For COVID-19, every extra 1° Celsius (1.8° Fahrenheit) makes R drop by 1.2%.<sup id="fnref36"><a href="#fn36" rel="footnote">36</a></sup> The summer-winter difference in New York City is 26°C (47°F),<sup id="fnref37"><a href="#fn37" rel="footnote">37</a></sup> so summer will make R drop by ~31%.</p>
<div class="sim">
<iframe src="sim?stage=int-6b&format=calc" width="285" height="220"></iframe>
@ -449,7 +449,7 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<p>But we wouldn&#39;t have to be 2-months-closed / 1-month-open over &amp; over! Because R is reduced, we&#39;d only need one or two more &quot;circuit breaker&quot; lockdowns before a vaccine is available. (Singapore had to do this recently, &quot;despite&quot; having controlled COVID-19 for 4 months. That&#39;s not failure: this <em>is</em> what success takes.)</p>
<p>Here&#39;s a simulation a &quot;lazy case&quot; scenario:</p>
<p>Here&#39;s a simulation of a &quot;lazy case&quot; scenario:</p>
<ol>
<li>Lockdown, then</li>
@ -495,16 +495,16 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<p>...<em>for how long?</em></p>
<ul>
<li>COVID-19 is most closely related to SARS, which gave its survivors 2 years of immunity.<sup id="fnref36"><a href="#fn36" rel="footnote">36</a></sup></li>
<li>The coronaviruses that cause &quot;the&quot; common cold give you 8 months of immunity.<sup id="fnref37"><a href="#fn37" rel="footnote">37</a></sup></li>
<li>There&#39;s reports of folks recovering from COVID-19, then testing positive again, but it&#39;s unclear if these are false positives.<sup id="fnref38"><a href="#fn38" rel="footnote">38</a></sup></li>
<li>One <em>not-yet-peer-reviewed</em> study on monkeys showed immunity to the COVID-19 coronavirus for at least 28 days.<sup id="fnref39"><a href="#fn39" rel="footnote">39</a></sup></li>
<li>COVID-19 is most closely related to SARS, which gave its survivors 2 years of immunity.<sup id="fnref38"><a href="#fn38" rel="footnote">38</a></sup></li>
<li>The coronaviruses that cause &quot;the&quot; common cold give you 8 months of immunity.<sup id="fnref39"><a href="#fn39" rel="footnote">39</a></sup></li>
<li>There&#39;s reports of folks recovering from COVID-19, then testing positive again, but it&#39;s unclear if these are false positives.<sup id="fnref40"><a href="#fn40" rel="footnote">40</a></sup></li>
<li>One <em>not-yet-peer-reviewed</em> study on monkeys showed immunity to the COVID-19 coronavirus for at least 28 days.<sup id="fnref41"><a href="#fn41" rel="footnote">41</a></sup></li>
</ul>
<p>But for COVID-19 <em>in humans</em>, as of May 1st 2020, &quot;how long&quot; is the big unknown.</p>
<p>For these simulations, let&#39;s say it&#39;s 1 year.
<strong>Here&#39;s a simulation starting with 100% <icon r></icon></strong>, exponentially decaying into susceptible, no-immunity <icon s></icon>s after 1 year, on <em>average</em>, with variation:</p>
<strong>Here&#39;s a simulation starting with 100% <span class="nowrap"><icon r></icon></strong>,</span> exponentially decaying into susceptible, no-immunity <span class="nowrap"><icon s></icon>s</span> after 1 year, on <em>average</em>, with variation:</p>
<div class="sim">
<iframe src="sim?stage=yrs-1&format=lines&height=600" width="800" height="600"></iframe>
@ -534,7 +534,7 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<p>Oh.</p>
<p>Counterintuitively, summer makes the spikes worse <em>and</em> regular! This is because summer reduces new <icon i></icon>s, but that in turn reduces new immune <icon r></icon>s. Which means immunity plummets in the summer, <em>creating</em> large regular spikes in the winter.</p>
<p>Counterintuitively, summer makes the spikes worse <em>and</em> regular! This is because summer reduces new <span class="nowrap"><icon i></icon>s,</span> but that in turn reduces new immune <span class="nowrap"><icon r></icon>s.</span> Which means immunity plummets in the summer, <em>creating</em> large regular spikes in the winter.</p>
<p>Thankfully, the solution to this is pretty straightforward just vaccinate people every fall/winter, like we do with flu shots:</p>
@ -550,7 +550,7 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<p><strong>To be clear: this is unlikely.</strong> Most epidemiologists expect a vaccine in 1 to 2 years. Sure, there&#39;s never been a vaccine for any of the other coronaviruses before, but that&#39;s because SARS was eradicated quickly, and &quot;the&quot; common cold wasn&#39;t worth the investment. </p>
<p>Still, infectious disease researchers have expressed worries: What if we can&#39;t make enough?<sup id="fnref40"><a href="#fn40" rel="footnote">40</a></sup> What if we rush it, and it&#39;s not safe?<sup id="fnref41"><a href="#fn41" rel="footnote">41</a></sup></p>
<p>Still, infectious disease researchers have expressed worries: What if we can&#39;t make enough?<sup id="fnref42"><a href="#fn42" rel="footnote">42</a></sup> What if we rush it, and it&#39;s not safe?<sup id="fnref43"><a href="#fn43" rel="footnote">43</a></sup></p>
<p>Even in the nightmare &quot;no-vaccine&quot; scenario, we still have 3 ways out. From most to least terrible:</p>
@ -589,7 +589,7 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
</div>
</div>
<p>Plane&#39;s sunk. We&#39;ve scrambled onto the life rafts. It&#39;s time to find dry land.<sup id="fnref42"><a href="#fn42" rel="footnote">42</a></sup></p>
<p>Plane&#39;s sunk. We&#39;ve scrambled onto the life rafts. It&#39;s time to find dry land.<sup id="fnref44"><a href="#fn44" rel="footnote">44</a></sup></p>
<p>Teams of epidemiologists and policymakers (<a href="https://www.americanprogress.org/issues/healthcare/news/2020/04/03/482613/national-state-plan-end-coronavirus-crisis/">left</a>, <a href="https://www.aei.org/research-products/report/national-coronavirus-response-a-road-map-to-reopening/">right</a>, and <a href="https://ethics.harvard.edu/covid-roadmap">multi-partisan</a>) have come to a consensus on how to beat COVID-19, while protecting our lives <em>and</em> liberties.</p>
@ -728,27 +728,35 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
</li>
<li id="fn24">
<p><a href="https://github.com/TCNCoalition/TCN#tcn-protocol">Temporary Contact Numbers, a decentralized, privacy-first contact tracing protocol</a>&nbsp;<a href="#fnref24" rev="footnote">&#8617;</a></p>
<p>To prevent &quot;pranking&quot; (people falsely claiming to be infected), the DP-3T Protocol requires that the hospital first give you a One-Time Passcode that lets you upload your messages.&nbsp;<a href="#fnref24" rev="footnote">&#8617;</a></p>
<p>False positives are a problem in both manual &amp; digital contact tracing. Still, we can reduce false positives in 2 ways: 1) By notifying Bobs only if they heard, say, 30+ min worth of messages, not just one message in passing. And 2) If the app <em>does</em> think Bob&#39;s been exposed, it can refer Bob to a <em>manual</em> contact tracer, for an in-depth follow-up interview.</p>
<p>For other issues like data bandwidth, source integrity, and other security issues, check out <a href="https://github.com/DP-3T/documents#decentralized-privacy-preserving-proximity-tracing">the open-source DP-3T whitepapers!</a></p>
</li>
<li id="fn25">
<p><a href="https://pact.mit.edu/">PACT: Private Automated Contact Tracing</a>&nbsp;<a href="#fnref25" rev="footnote">&#8617;</a></p>
<p><a href="https://github.com/TCNCoalition/TCN#tcn-protocol">Temporary Contact Numbers, a decentralized, privacy-first contact tracing protocol</a>&nbsp;<a href="#fnref25" rev="footnote">&#8617;</a></p>
</li>
<li id="fn26">
<p><a href="https://www.apple.com/ca/newsroom/2020/04/apple-and-google-partner-on-covid-19-contact-tracing-technology/">Apple and Google partner on COVID-19 contact tracing technology </a>. Note they&#39;re not making the apps <em>themselves</em>, just creating the systems that will <em>support</em> those apps.&nbsp;<a href="#fnref26" rev="footnote">&#8617;</a></p>
<p><a href="https://pact.mit.edu/">PACT: Private Automated Contact Tracing</a>&nbsp;<a href="#fnref26" rev="footnote">&#8617;</a></p>
</li>
<li id="fn27">
<p>Lots of news reports and honestly, many research papers did not distinguish between &quot;cases who showed no symptoms when we tested them&quot; (pre-symptomatic) and &quot;cases who showed no symptoms <em>ever</em>&quot; (true asymptomatic). The only way you could tell the difference is by following up with cases later.&nbsp;<a href="#fnref27" rev="footnote">&#8617;</a></p>
<p><a href="https://www.apple.com/ca/newsroom/2020/04/apple-and-google-partner-on-covid-19-contact-tracing-technology/">Apple and Google partner on COVID-19 contact tracing technology </a>. Note they&#39;re not making the apps <em>themselves</em>, just creating the systems that will <em>support</em> those apps.&nbsp;<a href="#fnref27" rev="footnote">&#8617;</a></p>
</li>
<li id="fn28">
<p>Lots of news reports and honestly, many research papers did not distinguish between &quot;cases who showed no symptoms when we tested them&quot; (pre-symptomatic) and &quot;cases who showed no symptoms <em>ever</em>&quot; (true asymptomatic). The only way you could tell the difference is by following up with cases later.&nbsp;<a href="#fnref28" rev="footnote">&#8617;</a></p>
<p>Which is what <a href="https://wwwnc.cdc.gov/eid/article/26/8/20-1274_article">this study</a> did. (Disclaimer: &quot;Early release articles are not considered as final versions.&quot;) In a call center in South Korea that had a COVID-19 outbreak, &quot;only 4 (1.9%) remained asymptomatic within 14 days of quarantine, and none of their household contacts acquired secondary infections.&quot;</p>
<p>So that means &quot;true asymptomatics&quot; are rare, and catching the disease from a true asymptomatic may be even rarer!</p>
</li>
<li id="fn28">
<p>From the same Oxford study that first recommended apps to fight COVID-19: <a href="https://science.sciencemag.org/content/early/2020/04/09/science.abb6936/tab-figures-data">Luca Ferretti &amp; Chris Wymant et al</a> See Figure 2. Assuming R<sub>0</sub> = 2.0, they found that: &nbsp;<a href="#fnref28" rev="footnote">&#8617;</a></p>
<li id="fn29">
<p>From the same Oxford study that first recommended apps to fight COVID-19: <a href="https://science.sciencemag.org/content/early/2020/04/09/science.abb6936/tab-figures-data">Luca Ferretti &amp; Chris Wymant et al</a> See Figure 2. Assuming R<sub>0</sub> = 2.0, they found that: &nbsp;<a href="#fnref29" rev="footnote">&#8617;</a></p>
<ul>
<li>Symptomatics contribute R = 0.8 (40%)</li>
@ -760,64 +768,68 @@ the <em>second</em>-most important idea in Epidemiology 101:</p>
<p>And add up the pre- &amp; a-symptomatic contacts (45% + 5%) and you get 50% of R!</p>
</li>
<li id="fn29">
<p>“None of these surgical masks exhibited adequate filter performance and facial fit characteristics to be considered respiratory protection devices.” <a href="https://www.sciencedirect.com/science/article/pii/S0196655307007742">Tara Oberg &amp; Lisa M. Brosseau</a>&nbsp;<a href="#fnref29" rev="footnote">&#8617;</a></p>
</li>
<li id="fn30">
<p>The overall 3.4 fold reduction [70% reduction] in aerosol copy numbers we observed combined with a nearly complete elimination of large droplet spray demonstrated by Johnson et al. suggests that surgical masks worn by infected persons could have a clinically significant impact on transmission.” <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591312/">Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ</a>&nbsp;<a href="#fnref30" rev="footnote">&#8617;</a></p>
<p>“None of these surgical masks exhibited adequate filter performance and facial fit characteristics to be considered respiratory protection devices.” <a href="https://www.sciencedirect.com/science/article/pii/S0196655307007742">Tara Oberg &amp; Lisa M. Brosseau</a>&nbsp;<a href="#fnref30" rev="footnote">&#8617;</a></p>
</li>
<li id="fn31">
<p>Any actual scientist who read that last sentence is probably laugh-crying right now. See: <a href="https://en.wikipedia.org/wiki/Data_dredging">p-hacking</a>, <a href="https://en.wikipedia.org/wiki/Replication_crisis">the replication crisis</a>)&nbsp;<a href="#fnref31" rev="footnote">&#8617;</a></p>
<p>“The overall 3.4 fold reduction [70% reduction] in aerosol copy numbers we observed combined with a nearly complete elimination of large droplet spray demonstrated by Johnson et al. suggests that surgical masks worn by infected persons could have a clinically significant impact on transmission.” <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591312/">Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ</a>&nbsp;<a href="#fnref31" rev="footnote">&#8617;</a></p>
</li>
<li id="fn32">
<p>“It is time to apply the precautionary principle” <a href="https://www.bmj.com/content/bmj/369/bmj.m1435.full.pdf">Trisha Greenhalgh et al [PDF]</a>&nbsp;<a href="#fnref32" rev="footnote">&#8617;</a></p>
<p>Any actual scientist who read that last sentence is probably laugh-crying right now. See: <a href="https://en.wikipedia.org/wiki/Data_dredging">p-hacking</a>, <a href="https://en.wikipedia.org/wiki/Replication_crisis">the replication crisis</a>)&nbsp;<a href="#fnref32" rev="footnote">&#8617;</a></p>
</li>
<li id="fn33">
<p><a href="https://www.cambridge.org/core/journals/disaster-medicine-and-public-health-preparedness/article/testing-the-efficacy-of-homemade-masks-would-they-protect-in-an-influenza-pandemic/0921A05A69A9419C862FA2F35F819D55">Davies, A., Thompson, K., Giri, K., Kafatos, G., Walker, J., &amp; Bennett, A</a> See Table 1: a 100% cotton T-shirt has around 2/3 the filtration efficiency as a surgical mask, for the two bacterial aerosols they tested.&nbsp;<a href="#fnref33" rev="footnote">&#8617;</a></p>
<p>“It is time to apply the precautionary principle” <a href="https://www.bmj.com/content/bmj/369/bmj.m1435.full.pdf">Trisha Greenhalgh et al [PDF]</a>&nbsp;<a href="#fnref33" rev="footnote">&#8617;</a></p>
</li>
<li id="fn34">
<p><strong>&quot;We need to save supplies for hospitals.&quot;</strong> <em>Absolutely agreed.</em> But that&#39;s more of an argument for increasing mask production, not rationing. In the meantime, we can make cloth masks.&nbsp;<a href="#fnref34" rev="footnote">&#8617;</a></p>
<p><a href="https://www.cambridge.org/core/journals/disaster-medicine-and-public-health-preparedness/article/testing-the-efficacy-of-homemade-masks-would-they-protect-in-an-influenza-pandemic/0921A05A69A9419C862FA2F35F819D55">Davies, A., Thompson, K., Giri, K., Kafatos, G., Walker, J., &amp; Bennett, A</a> See Table 1: a 100% cotton T-shirt has around 2/3 the filtration efficiency as a surgical mask, for the two bacterial aerosols they tested.&nbsp;<a href="#fnref34" rev="footnote">&#8617;</a></p>
</li>
<li id="fn35">
<p><strong>&quot;We need to save supplies for hospitals.&quot;</strong> <em>Absolutely agreed.</em> But that&#39;s more of an argument for increasing mask production, not rationing. In the meantime, we can make cloth masks.&nbsp;<a href="#fnref35" rev="footnote">&#8617;</a></p>
<p><strong>&quot;They&#39;re hard to wear correctly.&quot;</strong> It&#39;s also hard to wash your hands according to the WHO Guidelines seriously, &quot;Step 3) right palm over left dorsum&quot;?! but we still recommend handwashing, because imperfect is still better than nothing.</p>
<p><strong>&quot;It&#39;ll make people more reckless with handwashing &amp; social distancing.&quot;</strong> Sure, and safety belts make people ignore stop signs, and flossing makes people eat rocks. But seriously, we&#39;d argue the opposite: masks are a <em>constant physical reminder</em> to be careful and in East Asia, masks are also a symbol of solidarity!</p>
</li>
<li id="fn35">
<p>“One-degree Celsius increase in temperature [...] lower[s] R by 0.0225” and “The average R-value of these 100 cities is 1.83”. 0.0225 ÷ 1.83 = ~1.2%. <a href="https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3551767">Wang, Jingyuan and Tang, Ke and Feng, Kai and Lv, Weifeng</a>&nbsp;<a href="#fnref35" rev="footnote">&#8617;</a></p>
</li>
<li id="fn36">
<p>SARS-specific antibodies were maintained for an average of 2 years [...] Thus, SARS patients might be susceptible to reinfection ≥3 years after initial exposure.” <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851497/">Wu LP, Wang NC, Chang YH, et al.</a> &quot;Sadly&quot; we&#39;ll never know how long SARS immunity would have really lasted, since we eradicated it so quickly.&nbsp;<a href="#fnref36" rev="footnote">&#8617;</a></p>
<p>“One-degree Celsius increase in temperature [...] lower[s] R by 0.0225” and “The average R-value of these 100 cities is 1.83”. 0.0225 ÷ 1.83 = ~1.2%. <a href="https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3551767">Wang, Jingyuan and Tang, Ke and Feng, Kai and Lv, Weifeng</a>&nbsp;<a href="#fnref36" rev="footnote">&#8617;</a></p>
</li>
<li id="fn37">
<p>“We found no significant difference between the probability of testing positive at least once and the probability of a recurrence for the beta-coronaviruses HKU1 and OC43 at 34 weeks after enrollment/first infection.” <a href="http://www.columbia.edu/%7Ejls106/galanti_shaman_ms_supp.pdf">Marta Galanti &amp; Jeffrey Shaman (PDF)</a>&nbsp;<a href="#fnref37" rev="footnote">&#8617;</a></p>
<p>In 2019 at Central Park, hottest month (July) was 79.6°F, coldest month (Jan) was 32.5°F. Difference is 47.1°F, or ~26°C. <a href="https://www.weather.gov/media/okx/Climate/CentralPark/monthlyannualtemp.pdf">PDF from Weather.gov</a>&nbsp;<a href="#fnref37" rev="footnote">&#8617;</a></p>
</li>
<li id="fn38">
<p>Once a person fights off a virus, viral particles tend to linger for some time. These cannot cause infections, but they can trigger a positive test.” <a href="https://www.statnews.com/2020/04/20/everything-we-know-about-coronavirus-immunity-and-antibodies-and-plenty-we-still-dont/">from STAT News by Andrew Joseph</a>&nbsp;<a href="#fnref38" rev="footnote">&#8617;</a></p>
<p>SARS-specific antibodies were maintained for an average of 2 years [...] Thus, SARS patients might be susceptible to reinfection ≥3 years after initial exposure.” <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851497/">Wu LP, Wang NC, Chang YH, et al.</a> &quot;Sadly&quot; we&#39;ll never know how long SARS immunity would have really lasted, since we eradicated it so quickly.&nbsp;<a href="#fnref38" rev="footnote">&#8617;</a></p>
</li>
<li id="fn39">
<p>From <a href="https://www.biorxiv.org/content/10.1101/2020.03.13.990226v1.abstract">Bao et al.</a> <em>Disclaimer: This article is a preprint and has not been certified by peer review (yet).</em> Also, to emphasize: they only tested re-infection 28 days later. &nbsp;<a href="#fnref39" rev="footnote">&#8617;</a></p>
<p>“We found no significant difference between the probability of testing positive at least once and the probability of a recurrence for the beta-coronaviruses HKU1 and OC43 at 34 weeks after enrollment/first infection.” <a href="http://www.columbia.edu/%7Ejls106/galanti_shaman_ms_supp.pdf">Marta Galanti &amp; Jeffrey Shaman (PDF)</a>&nbsp;<a href="#fnref39" rev="footnote">&#8617;</a></p>
</li>
<li id="fn40">
<p>If a coronavirus vaccine arrives, can the world make enough?” <a href="https://www.nature.com/articles/d41586-020-01063-8">by Roxanne Khamsi, on Nature</a>&nbsp;<a href="#fnref40" rev="footnote">&#8617;</a></p>
<p>Once a person fights off a virus, viral particles tend to linger for some time. These cannot cause infections, but they can trigger a positive test.” <a href="https://www.statnews.com/2020/04/20/everything-we-know-about-coronavirus-immunity-and-antibodies-and-plenty-we-still-dont/">from STAT News by Andrew Joseph</a>&nbsp;<a href="#fnref40" rev="footnote">&#8617;</a></p>
</li>
<li id="fn41">
<p>“Dont rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees” <a href="https://www.nature.com/articles/d41586-020-00751-9">by Shibo Jiang, on Nature</a>&nbsp;<a href="#fnref41" rev="footnote">&#8617;</a></p>
<p>From <a href="https://www.biorxiv.org/content/10.1101/2020.03.13.990226v1.abstract">Bao et al.</a> <em>Disclaimer: This article is a preprint and has not been certified by peer review (yet).</em> Also, to emphasize: they only tested re-infection 28 days later. &nbsp;<a href="#fnref41" rev="footnote">&#8617;</a></p>
</li>
<li id="fn42">
<p>Dry land metaphor <a href="https://www.statnews.com/2020/04/01/navigating-covid-19-pandemic/">from Marc Lipsitch &amp; Yonatan Grad, on STAT News</a>&nbsp;<a href="#fnref42" rev="footnote">&#8617;</a></p>
<p>“If a coronavirus vaccine arrives, can the world make enough?” <a href="https://www.nature.com/articles/d41586-020-01063-8">by Roxanne Khamsi, on Nature</a>&nbsp;<a href="#fnref42" rev="footnote">&#8617;</a></p>
</li>
<li id="fn43">
<p>“Dont rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees” <a href="https://www.nature.com/articles/d41586-020-00751-9">by Shibo Jiang, on Nature</a>&nbsp;<a href="#fnref43" rev="footnote">&#8617;</a></p>
</li>
<li id="fn44">
<p>Dry land metaphor <a href="https://www.statnews.com/2020/04/01/navigating-covid-19-pandemic/">from Marc Lipsitch &amp; Yonatan Grad, on STAT News</a>&nbsp;<a href="#fnref44" rev="footnote">&#8617;</a></p>
</li>
</ol>

View File

@ -60,7 +60,7 @@
[^serial_interval]: “Средний [серийный] интервал составил 3.96 days (95% CI 3.534.39 days)”. [Du Z, Xu X, Wu Y, Wang L, Cowling BJ, Ancel Meyers L](https://wwwnc.cdc.gov/eid/article/26/6/20-0357_article) (Дисклеймер: статьи с ранним доступом могут отличаться от финальной версии)
Если мы симулируем сценарий *только* удвоения каждые 4 дня, начиная со всего 0.001% <icon i></icon>, что случится?
Если мы симулируем сценарий *только* удвоения каждые 4 дня, начиная со всего 0.001% <span class="nowrap"><icon i></icon></span>, что случится?
**Нажмите "Start"! Вы сможете перезапустить игру с другими настройками:** (технические оговорки: [^caveats])
@ -83,7 +83,7 @@
![](pics/susceptibles.png)
Чем больше вокруг <icon i></icon>, тем быстрее <icon s></icon> превращаются в <icon i></icon>, **но чем меньше вокруг <icon s></icon>, тем *медленнее* <icon s></icon> становятся <icon i></icon>.**
Чем больше вокруг <span class="nowrap"><icon i></icon></span>, тем быстрее <span class="nowrap"><icon s></icon></span> превращаются в <span class="nowrap"><icon i></icon></span>, **но чем меньше вокруг <span class="nowrap"><icon s></icon></span>, тем *медленнее* <span class="nowrap"><icon s></icon></span> становятся <span class="nowrap"><icon i></icon></span>.**
Как это меняет рост эпидемии? Давайте выясним:
@ -98,9 +98,9 @@
<icon i></icon> Заразные люди рано или поздно перестают быть заразными потому что 1) выздоравливают, 2) "выздоравливают" с непоправимым ущербом для лёгких, или 3) умирают.
Для простоты, давайте считать, что все
<icon i></icon> Заразные люди становятся <icon r></icon> Выздоровевшими. (Просто помните, что на самом деле некоторые из них мертвы.) <icon r></icon> не могут быть заражены снова, и давайте *пока!* считать, что иммунитет сохраняется на всю жизнь.
<icon i></icon> Заразные люди становятся <icon r></icon> Выздоровевшими. (Просто помните, что на самом деле некоторые из них мертвы.) <span class="nowrap"><icon r></icon></span> не могут быть заражены снова, и давайте *пока!* считать, что иммунитет сохраняется на всю жизнь.
В случае COVID-19 оценивают, что человек <icon i></icon> Заразен *в среднем* 10 дней.[^infectiousness] Это значит, что некоторые выздоровеют быстрее 10 дней, а некоторые медленнее. **Вот как это выглядит, если симуляция начинается с 100% <icon i></icon>:**
В случае COVID-19 оценивают, что человек <icon i></icon> Заразен *в среднем* 10 дней.[^infectiousness] Это значит, что некоторые выздоровеют быстрее 10 дней, а некоторые медленнее. **Вот как это выглядит, если симуляция начинается с 100% <span class="nowrap"><icon i></icon></span>:**
[^infectiousness]: “The median communicable period \[...\] was 9.5 days.” [Hu, Z., Song, C., Xu, C. et al](https://link.springer.com/article/10.1007/s11427-020-1661-4) Да, мы знаем, что "медиана" -- это не то же самое, что "среднее", но для образовательного упрощения это достаточно близко.
@ -117,9 +117,9 @@
Давайте выясним.
<b style='color:#ff4040'>Красная кривая</b> -- это *текущие* больные <icon i></icon>,
<b style='color:#999999'>Серая кривая</b> -- это *общее количество* случаев (текущие больные и выздоровевшие <icon r></icon>),
Начиная со всего 0.001% <icon i></icon>:
<b style='color:#ff4040'>Красная кривая</b> -- это *текущие* больные <span class="nowrap"><icon i></icon>,</span>
<b style='color:#999999'>Серая кривая</b> -- это *общее количество* случаев (текущие больные и выздоровевшие <span class="nowrap"><icon r></icon>),</span>
Начиная со всего 0.001% <span class="nowrap"><icon i></icon>:</span>
<div class="sim">
<iframe src="sim?stage=epi-4" width="800" height="540"></iframe>
@ -137,7 +137,7 @@
**ВНИМАНИЕ: Симуляции, которые используются в планировании политики сильно, *сильно* сложнее, чем наша!** Но модель SIR всё равно может объяснить общие закономерности, даже если она и упускает нюансы.
На самом деле, давайте добавим один нюанс: перед тем как человек из <icon s></icon> превращается в <icon i></icon>, он вначале становится <icon e></icon> Латентно инфицированным. Это значит, что у него есть вирус, но он его не может передать *заражённый*, но ещё не *заразный*.
На самом деле, давайте добавим один нюанс: перед тем как человек из <icon s></icon> превращается в <span class="nowrap"><icon i></icon></span>, он вначале становится <icon e></icon> Латентно инфицированным. Это значит, что у него есть вирус, но он его не может передать *заражённый*, но ещё не *заразный*.
![](pics/seir.png)
@ -149,14 +149,14 @@
[^latent]: “Assuming an incubation period distribution of mean 5.2 days from a separate study of early COVID-19 cases, we inferred that infectiousness started from 2.3 days (95% CI, 0.83.0 days) before symptom onset” (перевод: Симптомы начинаются на пятый день, а заразным человек становится за 2 дня до этого = заразным человек становится на третий день) [He, X., Lau, E.H.Y., Wu, P. et al.](https://www.nature.com/articles/s41591-020-0869-5)
<b style='color:#ff4040'>Красная <b style='color:#FF9393'>+ Розовая</b> кривая</b> -- это *носители* (Заразные <icon i></icon> + Латентно инфицированные <icon e></icon>),
<b style='color:#888'>Серая кривая</b> -- это *общее* количество (носители + Выздоровевшие <icon r></icon>):
<b style='color:#ff4040'>Красная <b style='color:#FF9393'>+ Розовая</b> кривая</b> -- это *носители* (Заразные <icon i></icon> + Латентно инфицированные <span class="nowrap"><icon e></icon>),</span>
<b style='color:#888'>Серая кривая</b> -- это *общее* количество (носители + Выздоровевшие <span class="nowrap"><icon r></icon>):</span>
<div class="sim">
<iframe src="sim?stage=epi-5" width="800" height="540"></iframe>
</div>
Не сильно-то и поменялось! То как долго человек инфицирован латентно <icon e></icon> меняет отношение <icon e></icon> к <icon i></icon>, и *время* пика больных, но *высота* этого пика и общее количество заболевших в конце концов оказываются такими же как и раньше.
Не сильно-то и поменялось! То как долго человек инфицирован латентно <icon e></icon> меняет отношение <span class="nowrap"><icon e></icon> к <icon i></icon>,</span> и *время* пика больных, но *высота* этого пика и общее количество заболевших в конце концов оказываются такими же как и раньше.
Почему так? Из-за *главной* идеи Эпидемиологического ликбеза:
@ -192,7 +192,7 @@ R<sub>0</sub> для сезонных гриппов обычно колебле
<iframe src="sim?stage=epi-6a&format=calc" width="285" height="255"></iframe>
</div>
Но учтите, что чем меньше у нас <icon s></icon>, тем *медленнее* <icon s></icon> становятся <icon i></icon>. *Текущий* индекс репродукции (R) зависит не только от *базового* (R<sub>0</sub>), но *ещё* и от того, сколько людей больше не <icon s></icon> Уязвимы (скажем, потому что они выздоровели и приобрели иммунитет.)
Но учтите, что чем меньше у нас <span class="nowrap"><icon s></icon>,</span> тем *медленнее* <span class="nowrap"><icon s></icon></span> становятся <span class="nowrap"><icon i></icon>.</span> *Текущий* индекс репродукции (R) зависит не только от *базового* (R<sub>0</sub>), но *ещё* и от того, сколько людей больше не <icon s></icon> Уязвимы (скажем, потому что они выздоровели и приобрели иммунитет.)
<div class="sim">
<iframe src="sim?stage=epi-6b&format=calc" width="285" height="390"></iframe>
@ -208,7 +208,7 @@ R<sub>0</sub> для сезонных гриппов обычно колебле
**Обратите внимание: болезнь не прекратила распространяться после достижения коллективного иммунитета, а намного переплюнула эту точку!** И она пересекает порог *ровно* в момент, когда число больных достигает пика. (Это происходит при любых настройках -- можете сами попробовать!)
Это случается из-за того, что как только не-<icon s ></icon> становится больше порога коллективного иммунитета, мы приходим в R < 1. А когда R < 1, число больных перестаёт расти: случается пик.
Это случается из-за того, что как только <span class="nowrap">не-<icon s ></icon></span> становится больше порога коллективного иммунитета, мы приходим в R < 1. А когда R < 1, число больных перестаёт расти: случается пик.
**Важнейший момент, который стоит вынести из этой статьи, представлен на диаграмме ниже** -- она весьма запутана, так что уделите достаточно внимания, чтобы полностью осознать её смысл:
@ -295,7 +295,7 @@ Increased handwashing cuts flus & colds in high-income countries by ~25%[^handwa
[^london]: “We found a 73% reduction in the average daily number of contacts observed per participant. This would be sufficient to reduce R0 from a value from 2.6 before the lockdown to 0.62 (0.37 - 0.89) during the lockdown”. We rounded it down to 70% in these simulations for simplicity. [Jarvis and Zandvoort et al](https://cmmid.github.io/topics/covid19/comix-impact-of-physical-distance-measures-on-transmission-in-the-UK.html)
**Play with this calculator to see how % of non-<icon s></icon>, handwashing, and distancing reduce R:** (this calculator visualizes their *relative* effects, which is why increasing one *looks* like it decreases the effect of the others.[^log_caveat])
**Play with this calculator to see how % of <span class="nowrap">non-<icon s></icon>,</span> handwashing, and distancing reduce R:** (this calculator visualizes their *relative* effects, which is why increasing one *looks* like it decreases the effect of the others.[^log_caveat])
[^log_caveat]: This distortion would go away if we plotted R on a logarithmic scale... but then we'd have to explain *logarithmic scales.*
@ -333,7 +333,7 @@ Let's see what happens if we *crush* the curve with a 5-month lockdown, reduce <
Oh.
This is the "second wave" everyone's talking about. As soon as we remove the lockdown, we get R > 1 again. So, a single leftover <icon i></icon> (or imported <icon i></icon>) can cause a spike in cases that's almost as bad as if we'd done Scenario 0: Absolutely Nothing.
This is the "second wave" everyone's talking about. As soon as we remove the lockdown, we get R > 1 again. So, a single leftover <icon i></icon> (or imported <span class="nowrap"><icon i></icon>)</span> can cause a spike in cases that's almost as bad as if we'd done Scenario 0: Absolutely Nothing.
**A lockdown isn't a cure, it's just a restart.**
@ -399,7 +399,7 @@ This is called **contact tracing**. It's an old idea, was used at an unprecedent
[^ebola]: “Contact tracing was a critical intervention in Liberia and represented one of the largest contact tracing efforts during an epidemic in history.” [Swanson KC, Altare C, Wesseh CS, et al.](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152989/)
(It also lets us use our limited tests more efficiently, to find pre-symptomatic <icon i></icon>s without needing to test almost everyone.)
(It also lets us use our limited tests more efficiently, to find pre-symptomatic <span class="nowrap"><icon i></icon>s</span> without needing to test almost everyone.)
Traditionally, contacts are found with in-person interviews, but those *alone* are too slow for COVID-19's ~48 hour window. That's why contact tracers need help, and be supported by *NOT* replaced by contact tracing apps.
@ -413,7 +413,13 @@ Here's how it works:
![](pics/dp3t.png)
(& [here's the full comic](https://ncase.me/contact-tracing/))
([Here's the full comic](https://ncase.me/contact-tracing/). Details about "pranking"/false positives/etc in footnote:[^dp3t_details])
[^dp3t_details]: To prevent "pranking" (people falsely claiming to be infected), the DP-3T Protocol requires that the hospital first give you a One-Time Passcode that lets you upload your messages.
False positives are a problem in both manual & digital contact tracing. Still, we can reduce false positives in 2 ways: 1) By notifying Bobs only if they heard, say, 30+ min worth of messages, not just one message in passing. And 2) If the app *does* think Bob's been exposed, it can refer Bob to a *manual* contact tracer, for an in-depth follow-up interview.
For other issues like data bandwidth, source integrity, and other security issues, check out [the open-source DP-3T whitepapers!](https://github.com/DP-3T/documents#decentralized-privacy-preserving-proximity-tracing)
Along with similar teams like TCN Protocol[^tcn] and MIT PACT[^pact], they've inspired Apple & Google to bake privacy-first contact tracing directly into Android/iOS.[^gapple] (Don't trust Google/Apple? Good! The beauty of this system is it doesn't *need* trust!) Soon, your local public health agency may ask you to download an app. If it's privacy-first with publicly-available code, please do!
@ -425,7 +431,7 @@ Along with similar teams like TCN Protocol[^tcn] and MIT PACT[^pact], they've in
But what about folks without smartphones? Or infections through doorknobs? Or "true" asymptomatic cases? Contact tracing apps can't catch all transmissions... *and that's okay!* We don't need to catch *all* transmissions, just 60%+ to get R < 1.
(Rant about the confusion about pre-symptomatic vs "true" asymptomatic. "True" asymptomatics are rare:[^rant])
(Footnote rant about the confusion between pre-symptomatic vs "true" asymptomatic "true" asymptomatics are rare:[^rant])
[^rant]: Lots of news reports and honestly, many research papers did not distinguish between "cases who showed no symptoms when we tested them" (pre-symptomatic) and "cases who showed no symptoms *ever*" (true asymptomatic). The only way you could tell the difference is by following up with cases later.
@ -450,7 +456,7 @@ Isolating *symptomatic* cases would reduce R by up to 40%, and quarantining thei
Thus, even without 100% contact quarantining, we can get R < 1 *without a lockdown!* Much better for our mental & financial health. (As for the cost to folks who have to self-isolate/quarantine, *governments should support them* pay for the tests, job protection, subsidized paid leave, etc. Still way cheaper than intermittent lockdown.)
We then keep R < 1 until we have a vaccine, which turns susceptible <icon s></icon>s into immune <icon r></icon>s. Herd immunity, the *right* way:
We then keep R < 1 until we have a vaccine, which turns susceptible <span class="nowrap"><icon s></icon>s</span> into immune <span class="nowrap"><icon r></icon>s.</span> Herd immunity, the *right* way:
<div class="sim">
<iframe src="sim?stage=int-4b&format=calc" width="285" height="230"></iframe>
@ -499,7 +505,7 @@ You're right. Masks don't stop you from getting sick[^incoming]... they stop you
![](pics/masks.png)
To put a number on it: surgical masks *on the sick person* reduce cold & flu viruses in aerosols by 70%.[^outgoing] Reducing transmissions by 70% would be as large an impact as a lockdown!
To put a number on it: surgical masks *on the infectious person* reduce cold & flu viruses in aerosols by 70%.[^outgoing] Reducing transmissions by 70% would be as large an impact as a lockdown!
However, we don't know for sure the impact of masks on COVID-19 *specifically*. In science, one should only publish a finding if you're 95% sure of it. (...should.[^replication]) Masks, as of May 1st 2020, are less than "95% sure".
@ -533,10 +539,12 @@ Masks *alone* won't get R < 1. But if handwashing & "Test, Trace, Isolate" only
Okay, this isn't an "intervention" we can control, but it will help! Some news outlets report that summer won't do anything to COVID-19. They're half right: summer won't get R < 1, but it *will* reduce R.
For COVID-19, every extra 1° Celsius (2.2° Fahrenheit) makes R drop by 1.2%.[^heat] The summer-winter difference in New York City is 15°C (60°F), so summer will make R drop by 18%.
For COVID-19, every extra 1° Celsius (1.8° Fahrenheit) makes R drop by 1.2%.[^heat] The summer-winter difference in New York City is 26°C (47°F),[^nyc_heat] so summer will make R drop by ~31%.
[^heat]: “One-degree Celsius increase in temperature [...] lower[s] R by 0.0225” and “The average R-value of these 100 cities is 1.83”. 0.0225 ÷ 1.83 = ~1.2%. [Wang, Jingyuan and Tang, Ke and Feng, Kai and Lv, Weifeng](https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3551767)
[^nyc_heat]: In 2019 at Central Park, hottest month (July) was 79.6°F, coldest month (Jan) was 32.5°F. Difference is 47.1°F, or ~26°C. [PDF from Weather.gov](https://www.weather.gov/media/okx/Climate/CentralPark/monthlyannualtemp.pdf)
<div class="sim">
<iframe src="sim?stage=int-6b&format=calc" width="285" height="220"></iframe>
</div>
@ -549,7 +557,7 @@ And if all that *still* isn't enough to get R < 1... we can do another lockdown.
But we wouldn't have to be 2-months-closed / 1-month-open over & over! Because R is reduced, we'd only need one or two more "circuit breaker" lockdowns before a vaccine is available. (Singapore had to do this recently, "despite" having controlled COVID-19 for 4 months. That's not failure: this *is* what success takes.)
Here's a simulation a "lazy case" scenario:
Here's a simulation of a "lazy case" scenario:
1. Lockdown, then
2. A moderate amount of hygiene & "Test, Trace, Isolate", with a mild amount of "Masks For All", then...
@ -606,7 +614,7 @@ But for COVID-19 *in humans*, as of May 1st 2020, "how long" is the big unknown.
[^monkeys]: From [Bao et al.](https://www.biorxiv.org/content/10.1101/2020.03.13.990226v1.abstract) *Disclaimer: This article is a preprint and has not been certified by peer review (yet).* Also, to emphasize: they only tested re-infection 28 days later.
For these simulations, let's say it's 1 year.
**Here's a simulation starting with 100% <icon r></icon>**, exponentially decaying into susceptible, no-immunity <icon s></icon>s after 1 year, on *average*, with variation:
**Here's a simulation starting with 100% <span class="nowrap"><icon r></icon>**,</span> exponentially decaying into susceptible, no-immunity <span class="nowrap"><icon s></icon>s</span> after 1 year, on *average*, with variation:
<div class="sim">
<iframe src="sim?stage=yrs-1&format=lines&height=600" width="800" height="600"></iframe>
@ -636,7 +644,7 @@ Thankfully, because summer reduces R, it'll make the situation better:
Oh.
Counterintuitively, summer makes the spikes worse *and* regular! This is because summer reduces new <icon i></icon>s, but that in turn reduces new immune <icon r></icon>s. Which means immunity plummets in the summer, *creating* large regular spikes in the winter.
Counterintuitively, summer makes the spikes worse *and* regular! This is because summer reduces new <span class="nowrap"><icon i></icon>s,</span> but that in turn reduces new immune <span class="nowrap"><icon r></icon>s.</span> Which means immunity plummets in the summer, *creating* large regular spikes in the winter.
Thankfully, the solution to this is pretty straightforward just vaccinate people every fall/winter, like we do with flu shots: