Compare commits

...

5 Commits

Author SHA1 Message Date
Maxim Lebedev 2e54d14167
🚧 Used new templates in main server 2023-10-11 20:34:20 +06:00
Maxim Lebedev 06304a9816
📌 Vendored go modules 2023-10-11 20:33:45 +06:00
Maxim Lebedev 662ba2669f
🍱 Generated templates and locales 2023-10-11 20:33:21 +06:00
Maxim Lebedev 8063189156
🧑‍💻 Added 'go:generate' instructions into main.go 2023-10-11 20:32:21 +06:00
Maxim Lebedev b0553ab6cf
💄 Created basic editor template 2023-10-11 20:31:48 +06:00
93 changed files with 20222 additions and 147 deletions

14
go.mod
View File

@ -3,10 +3,18 @@ module source.toby3d.me/toby3d/pub
go 1.21
require (
github.com/google/go-cmp v0.5.9
github.com/google/go-cmp v0.6.0
golang.org/x/xerrors v0.0.0-20220907171357-04be3eba64a2
)
require golang.org/x/net v0.15.0
require golang.org/x/net v0.17.0
require github.com/caarlos0/env/v9 v9.0.0
require (
github.com/caarlos0/env/v9 v9.0.0
github.com/valyala/quicktemplate v1.7.0
)
require (
github.com/valyala/bytebufferpool v1.0.0 // indirect
golang.org/x/text v0.13.0
)

31
go.sum
View File

@ -1,8 +1,31 @@
github.com/andybalholm/brotli v1.0.2/go.mod h1:loMXtMfwqflxFJPmdbJO0a3KNoPuLBgiu3qAvBg8x/Y=
github.com/andybalholm/brotli v1.0.3/go.mod h1:fO7iG3H7G2nSZ7m0zPUDn85XEX2GTukHGRSepvi9Eig=
github.com/caarlos0/env/v9 v9.0.0 h1:SI6JNsOA+y5gj9njpgybykATIylrRMklbs5ch6wO6pc=
github.com/caarlos0/env/v9 v9.0.0/go.mod h1:ye5mlCVMYh6tZ+vCgrs/B95sj88cg5Tlnc0XIzgZ020=
github.com/google/go-cmp v0.5.9 h1:O2Tfq5qg4qc4AmwVlvv0oLiVAGB7enBSJ2x2DqQFi38=
github.com/google/go-cmp v0.5.9/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
golang.org/x/net v0.15.0 h1:ugBLEUaxABaB5AJqW9enI0ACdci2RUd4eP51NTBvuJ8=
golang.org/x/net v0.15.0/go.mod h1:idbUs1IY1+zTqbi8yxTbhexhEEk5ur9LInksu6HrEpk=
github.com/golang/snappy v0.0.3/go.mod h1:/XxbfmMg8lxefKM7IXC3fBNl/7bRcc72aCRzEWrmP2Q=
github.com/google/go-cmp v0.6.0 h1:ofyhxvXcZhMsU5ulbFiLKl/XBFqE1GSq7atu8tAmTRI=
github.com/google/go-cmp v0.6.0/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
github.com/klauspost/compress v1.13.4/go.mod h1:8dP1Hq4DHOhN9w426knH3Rhby4rFm6D8eO+e+Dq5Gzg=
github.com/klauspost/compress v1.13.5/go.mod h1:/3/Vjq9QcHkK5uEr5lBEmyoZ1iFhe47etQ6QUkpK6sk=
github.com/valyala/bytebufferpool v1.0.0 h1:GqA5TC/0021Y/b9FG4Oi9Mr3q7XYx6KllzawFIhcdPw=
github.com/valyala/bytebufferpool v1.0.0/go.mod h1:6bBcMArwyJ5K/AmCkWv1jt77kVWyCJ6HpOuEn7z0Csc=
github.com/valyala/fasthttp v1.30.0/go.mod h1:2rsYD01CKFrjjsvFxx75KlEUNpWNBY9JWD3K/7o2Cus=
github.com/valyala/quicktemplate v1.7.0 h1:LUPTJmlVcb46OOUY3IeD9DojFpAVbsG+5WFTcjMJzCM=
github.com/valyala/quicktemplate v1.7.0/go.mod h1:sqKJnoaOF88V07vkO+9FL8fb9uZg/VPSJnLYn+LmLk8=
github.com/valyala/tcplisten v1.0.0/go.mod h1:T0xQ8SeCZGxckz9qRXTfG43PvQ/mcWh7FwZEA7Ioqkc=
golang.org/x/crypto v0.0.0-20210513164829-c07d793c2f9a/go.mod h1:P+XmwS30IXTQdn5tA2iutPOUgjI07+tq3H3K9MVA1s8=
golang.org/x/net v0.0.0-20210226172049-e18ecbb05110/go.mod h1:m0MpNAwzfU5UDzcl9v0D8zg8gWTRqZa9RBIspLL5mdg=
golang.org/x/net v0.0.0-20210510120150-4163338589ed/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.17.0 h1:pVaXccu2ozPjCXewfr1S7xza/zcXTity9cCdXQYSjIM=
golang.org/x/net v0.17.0/go.mod h1:NxSsAGuq816PNPmqtQdLE42eU2Fs7NoRIZrHJAlaCOE=
golang.org/x/sys v0.0.0-20201119102817-f84b799fce68/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210423082822-04245dca01da/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210514084401-e8d321eab015/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.13.0 h1:ablQoSUd0tRdKxZewP80B+BaqeKJuVhuRxj/dkrun3k=
golang.org/x/text v0.13.0/go.mod h1:TvPlkZtksWOMsz7fbANvkp4WM8x/WCo/om8BMLbz+aE=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/xerrors v0.0.0-20220907171357-04be3eba64a2 h1:H2TDz8ibqkAF6YGhCdN3jS9O0/s90v0rJh3X/OLHEUk=
golang.org/x/xerrors v0.0.0-20220907171357-04be3eba64a2/go.mod h1:K8+ghG5WaK9qNqU5K3HdILfMLy1f3aNYFI/wnl100a8=

View File

@ -0,0 +1,40 @@
{
"language": "en",
"messages": [
{
"id": "Name",
"message": "Name",
"translation": "Name",
"translatorComment": "Copied from source.",
"fuzzy": true
},
{
"id": "Content",
"message": "Content",
"translation": "Content",
"translatorComment": "Copied from source.",
"fuzzy": true
},
{
"id": "Published at",
"message": "Published at",
"translation": "Published at",
"translatorComment": "Copied from source.",
"fuzzy": true
},
{
"id": "Tags",
"message": "Tags",
"translation": "Tags",
"translatorComment": "Copied from source.",
"fuzzy": true
},
{
"id": "Send",
"message": "Send",
"translation": "Send",
"translatorComment": "Copied from source.",
"fuzzy": true
}
]
}

View File

@ -0,0 +1,30 @@
{
"language": "ru",
"messages": [
{
"id": "Name",
"message": "Name",
"translation": "Название"
},
{
"id": "Content",
"message": "Content",
"translation": "Содержимое"
},
{
"id": "Published at",
"message": "Published at",
"translation": "Дата публикации"
},
{
"id": "Tags",
"message": "Tags",
"translation": "Тэги"
},
{
"id": "Send",
"message": "Send",
"translation": "Отправить"
}
]
}

View File

@ -0,0 +1,30 @@
{
"language": "ru",
"messages": [
{
"id": "Name",
"message": "Name",
"translation": "Название"
},
{
"id": "Content",
"message": "Content",
"translation": "Содержимое"
},
{
"id": "Published at",
"message": "Published at",
"translation": "Дата публикации"
},
{
"id": "Tags",
"message": "Tags",
"translation": "Тэги"
},
{
"id": "Send",
"message": "Send",
"translation": "Отправить"
}
]
}

64
locales_gen.go Normal file
View File

@ -0,0 +1,64 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
package main
import (
"golang.org/x/text/language"
"golang.org/x/text/message"
"golang.org/x/text/message/catalog"
)
type dictionary struct {
index []uint32
data string
}
func (d *dictionary) Lookup(key string) (data string, ok bool) {
p, ok := messageKeyToIndex[key]
if !ok {
return "", false
}
start, end := d.index[p], d.index[p+1]
if start == end {
return "", false
}
return d.data[start:end], true
}
func init() {
dict := map[string]catalog.Dictionary{
"en": &dictionary{index: enIndex, data: enData},
"ru": &dictionary{index: ruIndex, data: ruData},
}
fallback := language.MustParse("en")
cat, err := catalog.NewFromMap(dict, catalog.Fallback(fallback))
if err != nil {
panic(err)
}
message.DefaultCatalog = cat
}
var messageKeyToIndex = map[string]int{
"Content": 1,
"Name": 0,
"Published at": 2,
"Send": 4,
"Tags": 3,
}
var enIndex = []uint32{ // 6 elements
0x00000000, 0x00000005, 0x0000000d, 0x0000001a,
0x0000001f, 0x00000024,
} // Size: 48 bytes
const enData string = "\x02Name\x02Content\x02Published at\x02Tags\x02Send"
var ruIndex = []uint32{ // 6 elements
0x00000000, 0x00000011, 0x00000026, 0x00000044,
0x0000004d, 0x00000060,
} // Size: 48 bytes
const ruData string = "" + // Size: 96 bytes
"\x02Название\x02Содержимое\x02Дата публикации\x02Тэги\x02Отправить"
// Total table size 228 bytes (0KiB); checksum: 36937515

18
main.go
View File

@ -1,3 +1,7 @@
//go:generate go install github.com/valyala/quicktemplate/qtc@master
//go:generate qtc -dir=web/template
//go:generate go install golang.org/x/text/cmd/gotext@master
//go:generate gotext -srclang=en update -lang=en,ru -out=locales_gen.go
package main
import (
@ -13,12 +17,16 @@ import (
"syscall"
"github.com/caarlos0/env/v9"
"golang.org/x/text/language"
"golang.org/x/text/message"
"source.toby3d.me/toby3d/pub/internal/common"
"source.toby3d.me/toby3d/pub/internal/domain"
mediahttpdelivery "source.toby3d.me/toby3d/pub/internal/media/delivery/http"
mediamemoryrepo "source.toby3d.me/toby3d/pub/internal/media/repository/memory"
mediaucase "source.toby3d.me/toby3d/pub/internal/media/usecase"
"source.toby3d.me/toby3d/pub/internal/urlutil"
"source.toby3d.me/toby3d/pub/web/template"
)
var (
@ -46,6 +54,7 @@ func main() {
mediaUseCase := mediaucase.NewMediaUseCase(mediaRepo)
mediaHandler := mediahttpdelivery.NewHandler(mediaUseCase, *config)
matcher := language.NewMatcher(message.DefaultCatalog.Languages())
server := http.Server{
ErrorLog: logger,
Addr: config.HTTP.Bind,
@ -54,7 +63,14 @@ func main() {
switch head {
default:
http.NotFound(w, r)
tags, _, err := language.ParseAcceptLanguage(r.Header.Get(common.HeaderAcceptLanguage))
if err != nil {
tags = append(tags, language.English)
}
tag, _, _ := matcher.Match(tags...)
template.WriteTemplate(w, template.NewPageEditor(template.NewBaseOf(tag)))
case "media":
mediaHandler.ServeHTTP(w, r)
}

View File

@ -5,7 +5,7 @@
// Package cmp determines equality of values.
//
// This package is intended to be a more powerful and safer alternative to
// reflect.DeepEqual for comparing whether two values are semantically equal.
// [reflect.DeepEqual] for comparing whether two values are semantically equal.
// It is intended to only be used in tests, as performance is not a goal and
// it may panic if it cannot compare the values. Its propensity towards
// panicking means that its unsuitable for production environments where a
@ -18,16 +18,17 @@
// For example, an equality function may report floats as equal so long as
// they are within some tolerance of each other.
//
// - Types with an Equal method may use that method to determine equality.
// This allows package authors to determine the equality operation
// for the types that they define.
// - Types with an Equal method (e.g., [time.Time.Equal]) may use that method
// to determine equality. This allows package authors to determine
// the equality operation for the types that they define.
//
// - If no custom equality functions are used and no Equal method is defined,
// equality is determined by recursively comparing the primitive kinds on
// both values, much like reflect.DeepEqual. Unlike reflect.DeepEqual,
// both values, much like [reflect.DeepEqual]. Unlike [reflect.DeepEqual],
// unexported fields are not compared by default; they result in panics
// unless suppressed by using an Ignore option (see cmpopts.IgnoreUnexported)
// or explicitly compared using the Exporter option.
// unless suppressed by using an [Ignore] option
// (see [github.com/google/go-cmp/cmp/cmpopts.IgnoreUnexported])
// or explicitly compared using the [Exporter] option.
package cmp
import (
@ -45,14 +46,14 @@ import (
// Equal reports whether x and y are equal by recursively applying the
// following rules in the given order to x and y and all of their sub-values:
//
// - Let S be the set of all Ignore, Transformer, and Comparer options that
// - Let S be the set of all [Ignore], [Transformer], and [Comparer] options that
// remain after applying all path filters, value filters, and type filters.
// If at least one Ignore exists in S, then the comparison is ignored.
// If the number of Transformer and Comparer options in S is non-zero,
// If at least one [Ignore] exists in S, then the comparison is ignored.
// If the number of [Transformer] and [Comparer] options in S is non-zero,
// then Equal panics because it is ambiguous which option to use.
// If S contains a single Transformer, then use that to transform
// If S contains a single [Transformer], then use that to transform
// the current values and recursively call Equal on the output values.
// If S contains a single Comparer, then use that to compare the current values.
// If S contains a single [Comparer], then use that to compare the current values.
// Otherwise, evaluation proceeds to the next rule.
//
// - If the values have an Equal method of the form "(T) Equal(T) bool" or
@ -66,21 +67,22 @@ import (
// Functions are only equal if they are both nil, otherwise they are unequal.
//
// Structs are equal if recursively calling Equal on all fields report equal.
// If a struct contains unexported fields, Equal panics unless an Ignore option
// (e.g., cmpopts.IgnoreUnexported) ignores that field or the Exporter option
// explicitly permits comparing the unexported field.
// If a struct contains unexported fields, Equal panics unless an [Ignore] option
// (e.g., [github.com/google/go-cmp/cmp/cmpopts.IgnoreUnexported]) ignores that field
// or the [Exporter] option explicitly permits comparing the unexported field.
//
// Slices are equal if they are both nil or both non-nil, where recursively
// calling Equal on all non-ignored slice or array elements report equal.
// Empty non-nil slices and nil slices are not equal; to equate empty slices,
// consider using cmpopts.EquateEmpty.
// consider using [github.com/google/go-cmp/cmp/cmpopts.EquateEmpty].
//
// Maps are equal if they are both nil or both non-nil, where recursively
// calling Equal on all non-ignored map entries report equal.
// Map keys are equal according to the == operator.
// To use custom comparisons for map keys, consider using cmpopts.SortMaps.
// To use custom comparisons for map keys, consider using
// [github.com/google/go-cmp/cmp/cmpopts.SortMaps].
// Empty non-nil maps and nil maps are not equal; to equate empty maps,
// consider using cmpopts.EquateEmpty.
// consider using [github.com/google/go-cmp/cmp/cmpopts.EquateEmpty].
//
// Pointers and interfaces are equal if they are both nil or both non-nil,
// where they have the same underlying concrete type and recursively

View File

@ -2,9 +2,6 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !purego
// +build !purego
package cmp
import (
@ -12,8 +9,6 @@ import (
"unsafe"
)
const supportExporters = true
// retrieveUnexportedField uses unsafe to forcibly retrieve any field from
// a struct such that the value has read-write permissions.
//

View File

@ -1,16 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build purego
// +build purego
package cmp
import "reflect"
const supportExporters = false
func retrieveUnexportedField(reflect.Value, reflect.StructField, bool) reflect.Value {
panic("no support for forcibly accessing unexported fields")
}

View File

@ -2,9 +2,6 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !purego
// +build !purego
package value
import (

View File

@ -1,34 +0,0 @@
// Copyright 2018, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build purego
// +build purego
package value
import "reflect"
// Pointer is an opaque typed pointer and is guaranteed to be comparable.
type Pointer struct {
p uintptr
t reflect.Type
}
// PointerOf returns a Pointer from v, which must be a
// reflect.Ptr, reflect.Slice, or reflect.Map.
func PointerOf(v reflect.Value) Pointer {
// NOTE: Storing a pointer as an uintptr is technically incorrect as it
// assumes that the GC implementation does not use a moving collector.
return Pointer{v.Pointer(), v.Type()}
}
// IsNil reports whether the pointer is nil.
func (p Pointer) IsNil() bool {
return p.p == 0
}
// Uintptr returns the pointer as a uintptr.
func (p Pointer) Uintptr() uintptr {
return p.p
}

View File

@ -13,15 +13,15 @@ import (
"github.com/google/go-cmp/cmp/internal/function"
)
// Option configures for specific behavior of Equal and Diff. In particular,
// the fundamental Option functions (Ignore, Transformer, and Comparer),
// Option configures for specific behavior of [Equal] and [Diff]. In particular,
// the fundamental Option functions ([Ignore], [Transformer], and [Comparer]),
// configure how equality is determined.
//
// The fundamental options may be composed with filters (FilterPath and
// FilterValues) to control the scope over which they are applied.
// The fundamental options may be composed with filters ([FilterPath] and
// [FilterValues]) to control the scope over which they are applied.
//
// The cmp/cmpopts package provides helper functions for creating options that
// may be used with Equal and Diff.
// The [github.com/google/go-cmp/cmp/cmpopts] package provides helper functions
// for creating options that may be used with [Equal] and [Diff].
type Option interface {
// filter applies all filters and returns the option that remains.
// Each option may only read s.curPath and call s.callTTBFunc.
@ -56,9 +56,9 @@ type core struct{}
func (core) isCore() {}
// Options is a list of Option values that also satisfies the Option interface.
// Options is a list of [Option] values that also satisfies the [Option] interface.
// Helper comparison packages may return an Options value when packing multiple
// Option values into a single Option. When this package processes an Options,
// [Option] values into a single [Option]. When this package processes an Options,
// it will be implicitly expanded into a flat list.
//
// Applying a filter on an Options is equivalent to applying that same filter
@ -105,16 +105,16 @@ func (opts Options) String() string {
return fmt.Sprintf("Options{%s}", strings.Join(ss, ", "))
}
// FilterPath returns a new Option where opt is only evaluated if filter f
// returns true for the current Path in the value tree.
// FilterPath returns a new [Option] where opt is only evaluated if filter f
// returns true for the current [Path] in the value tree.
//
// This filter is called even if a slice element or map entry is missing and
// provides an opportunity to ignore such cases. The filter function must be
// symmetric such that the filter result is identical regardless of whether the
// missing value is from x or y.
//
// The option passed in may be an Ignore, Transformer, Comparer, Options, or
// a previously filtered Option.
// The option passed in may be an [Ignore], [Transformer], [Comparer], [Options], or
// a previously filtered [Option].
func FilterPath(f func(Path) bool, opt Option) Option {
if f == nil {
panic("invalid path filter function")
@ -142,7 +142,7 @@ func (f pathFilter) String() string {
return fmt.Sprintf("FilterPath(%s, %v)", function.NameOf(reflect.ValueOf(f.fnc)), f.opt)
}
// FilterValues returns a new Option where opt is only evaluated if filter f,
// FilterValues returns a new [Option] where opt is only evaluated if filter f,
// which is a function of the form "func(T, T) bool", returns true for the
// current pair of values being compared. If either value is invalid or
// the type of the values is not assignable to T, then this filter implicitly
@ -154,8 +154,8 @@ func (f pathFilter) String() string {
// If T is an interface, it is possible that f is called with two values with
// different concrete types that both implement T.
//
// The option passed in may be an Ignore, Transformer, Comparer, Options, or
// a previously filtered Option.
// The option passed in may be an [Ignore], [Transformer], [Comparer], [Options], or
// a previously filtered [Option].
func FilterValues(f interface{}, opt Option) Option {
v := reflect.ValueOf(f)
if !function.IsType(v.Type(), function.ValueFilter) || v.IsNil() {
@ -192,9 +192,9 @@ func (f valuesFilter) String() string {
return fmt.Sprintf("FilterValues(%s, %v)", function.NameOf(f.fnc), f.opt)
}
// Ignore is an Option that causes all comparisons to be ignored.
// This value is intended to be combined with FilterPath or FilterValues.
// It is an error to pass an unfiltered Ignore option to Equal.
// Ignore is an [Option] that causes all comparisons to be ignored.
// This value is intended to be combined with [FilterPath] or [FilterValues].
// It is an error to pass an unfiltered Ignore option to [Equal].
func Ignore() Option { return ignore{} }
type ignore struct{ core }
@ -234,6 +234,8 @@ func (validator) apply(s *state, vx, vy reflect.Value) {
name = fmt.Sprintf("%q.%v", t.PkgPath(), t.Name()) // e.g., "path/to/package".MyType
if _, ok := reflect.New(t).Interface().(error); ok {
help = "consider using cmpopts.EquateErrors to compare error values"
} else if t.Comparable() {
help = "consider using cmpopts.EquateComparable to compare comparable Go types"
}
} else {
// Unnamed type with unexported fields. Derive PkgPath from field.
@ -254,7 +256,7 @@ const identRx = `[_\p{L}][_\p{L}\p{N}]*`
var identsRx = regexp.MustCompile(`^` + identRx + `(\.` + identRx + `)*$`)
// Transformer returns an Option that applies a transformation function that
// Transformer returns an [Option] that applies a transformation function that
// converts values of a certain type into that of another.
//
// The transformer f must be a function "func(T) R" that converts values of
@ -265,13 +267,14 @@ var identsRx = regexp.MustCompile(`^` + identRx + `(\.` + identRx + `)*$`)
// same transform to the output of itself (e.g., in the case where the
// input and output types are the same), an implicit filter is added such that
// a transformer is applicable only if that exact transformer is not already
// in the tail of the Path since the last non-Transform step.
// in the tail of the [Path] since the last non-[Transform] step.
// For situations where the implicit filter is still insufficient,
// consider using cmpopts.AcyclicTransformer, which adds a filter
// to prevent the transformer from being recursively applied upon itself.
// consider using [github.com/google/go-cmp/cmp/cmpopts.AcyclicTransformer],
// which adds a filter to prevent the transformer from
// being recursively applied upon itself.
//
// The name is a user provided label that is used as the Transform.Name in the
// transformation PathStep (and eventually shown in the Diff output).
// The name is a user provided label that is used as the [Transform.Name] in the
// transformation [PathStep] (and eventually shown in the [Diff] output).
// The name must be a valid identifier or qualified identifier in Go syntax.
// If empty, an arbitrary name is used.
func Transformer(name string, f interface{}) Option {
@ -329,7 +332,7 @@ func (tr transformer) String() string {
return fmt.Sprintf("Transformer(%s, %s)", tr.name, function.NameOf(tr.fnc))
}
// Comparer returns an Option that determines whether two values are equal
// Comparer returns an [Option] that determines whether two values are equal
// to each other.
//
// The comparer f must be a function "func(T, T) bool" and is implicitly
@ -377,35 +380,32 @@ func (cm comparer) String() string {
return fmt.Sprintf("Comparer(%s)", function.NameOf(cm.fnc))
}
// Exporter returns an Option that specifies whether Equal is allowed to
// Exporter returns an [Option] that specifies whether [Equal] is allowed to
// introspect into the unexported fields of certain struct types.
//
// Users of this option must understand that comparing on unexported fields
// from external packages is not safe since changes in the internal
// implementation of some external package may cause the result of Equal
// implementation of some external package may cause the result of [Equal]
// to unexpectedly change. However, it may be valid to use this option on types
// defined in an internal package where the semantic meaning of an unexported
// field is in the control of the user.
//
// In many cases, a custom Comparer should be used instead that defines
// In many cases, a custom [Comparer] should be used instead that defines
// equality as a function of the public API of a type rather than the underlying
// unexported implementation.
//
// For example, the reflect.Type documentation defines equality to be determined
// For example, the [reflect.Type] documentation defines equality to be determined
// by the == operator on the interface (essentially performing a shallow pointer
// comparison) and most attempts to compare *regexp.Regexp types are interested
// comparison) and most attempts to compare *[regexp.Regexp] types are interested
// in only checking that the regular expression strings are equal.
// Both of these are accomplished using Comparers:
// Both of these are accomplished using [Comparer] options:
//
// Comparer(func(x, y reflect.Type) bool { return x == y })
// Comparer(func(x, y *regexp.Regexp) bool { return x.String() == y.String() })
//
// In other cases, the cmpopts.IgnoreUnexported option can be used to ignore
// all unexported fields on specified struct types.
// In other cases, the [github.com/google/go-cmp/cmp/cmpopts.IgnoreUnexported]
// option can be used to ignore all unexported fields on specified struct types.
func Exporter(f func(reflect.Type) bool) Option {
if !supportExporters {
panic("Exporter is not supported on purego builds")
}
return exporter(f)
}
@ -415,10 +415,10 @@ func (exporter) filter(_ *state, _ reflect.Type, _, _ reflect.Value) applicableO
panic("not implemented")
}
// AllowUnexported returns an Options that allows Equal to forcibly introspect
// AllowUnexported returns an [Option] that allows [Equal] to forcibly introspect
// unexported fields of the specified struct types.
//
// See Exporter for the proper use of this option.
// See [Exporter] for the proper use of this option.
func AllowUnexported(types ...interface{}) Option {
m := make(map[reflect.Type]bool)
for _, typ := range types {
@ -432,7 +432,7 @@ func AllowUnexported(types ...interface{}) Option {
}
// Result represents the comparison result for a single node and
// is provided by cmp when calling Report (see Reporter).
// is provided by cmp when calling Report (see [Reporter]).
type Result struct {
_ [0]func() // Make Result incomparable
flags resultFlags
@ -445,7 +445,7 @@ func (r Result) Equal() bool {
}
// ByIgnore reports whether the node is equal because it was ignored.
// This never reports true if Equal reports false.
// This never reports true if [Result.Equal] reports false.
func (r Result) ByIgnore() bool {
return r.flags&reportByIgnore != 0
}
@ -455,7 +455,7 @@ func (r Result) ByMethod() bool {
return r.flags&reportByMethod != 0
}
// ByFunc reports whether a Comparer function determined equality.
// ByFunc reports whether a [Comparer] function determined equality.
func (r Result) ByFunc() bool {
return r.flags&reportByFunc != 0
}
@ -478,7 +478,7 @@ const (
reportByCycle
)
// Reporter is an Option that can be passed to Equal. When Equal traverses
// Reporter is an [Option] that can be passed to [Equal]. When [Equal] traverses
// the value trees, it calls PushStep as it descends into each node in the
// tree and PopStep as it ascend out of the node. The leaves of the tree are
// either compared (determined to be equal or not equal) or ignored and reported

View File

@ -14,9 +14,9 @@ import (
"github.com/google/go-cmp/cmp/internal/value"
)
// Path is a list of PathSteps describing the sequence of operations to get
// Path is a list of [PathStep] describing the sequence of operations to get
// from some root type to the current position in the value tree.
// The first Path element is always an operation-less PathStep that exists
// The first Path element is always an operation-less [PathStep] that exists
// simply to identify the initial type.
//
// When traversing structs with embedded structs, the embedded struct will
@ -29,8 +29,13 @@ type Path []PathStep
// a value's tree structure. Users of this package never need to implement
// these types as values of this type will be returned by this package.
//
// Implementations of this interface are
// StructField, SliceIndex, MapIndex, Indirect, TypeAssertion, and Transform.
// Implementations of this interface:
// - [StructField]
// - [SliceIndex]
// - [MapIndex]
// - [Indirect]
// - [TypeAssertion]
// - [Transform]
type PathStep interface {
String() string
@ -70,8 +75,9 @@ func (pa *Path) pop() {
*pa = (*pa)[:len(*pa)-1]
}
// Last returns the last PathStep in the Path.
// If the path is empty, this returns a non-nil PathStep that reports a nil Type.
// Last returns the last [PathStep] in the Path.
// If the path is empty, this returns a non-nil [PathStep]
// that reports a nil [PathStep.Type].
func (pa Path) Last() PathStep {
return pa.Index(-1)
}
@ -79,7 +85,8 @@ func (pa Path) Last() PathStep {
// Index returns the ith step in the Path and supports negative indexing.
// A negative index starts counting from the tail of the Path such that -1
// refers to the last step, -2 refers to the second-to-last step, and so on.
// If index is invalid, this returns a non-nil PathStep that reports a nil Type.
// If index is invalid, this returns a non-nil [PathStep]
// that reports a nil [PathStep.Type].
func (pa Path) Index(i int) PathStep {
if i < 0 {
i = len(pa) + i
@ -168,7 +175,8 @@ func (ps pathStep) String() string {
return fmt.Sprintf("{%s}", s)
}
// StructField represents a struct field access on a field called Name.
// StructField is a [PathStep] that represents a struct field access
// on a field called [StructField.Name].
type StructField struct{ *structField }
type structField struct {
pathStep
@ -204,10 +212,11 @@ func (sf StructField) String() string { return fmt.Sprintf(".%s", sf.name) }
func (sf StructField) Name() string { return sf.name }
// Index is the index of the field in the parent struct type.
// See reflect.Type.Field.
// See [reflect.Type.Field].
func (sf StructField) Index() int { return sf.idx }
// SliceIndex is an index operation on a slice or array at some index Key.
// SliceIndex is a [PathStep] that represents an index operation on
// a slice or array at some index [SliceIndex.Key].
type SliceIndex struct{ *sliceIndex }
type sliceIndex struct {
pathStep
@ -247,12 +256,12 @@ func (si SliceIndex) Key() int {
// all of the indexes to be shifted. If an index is -1, then that
// indicates that the element does not exist in the associated slice.
//
// Key is guaranteed to return -1 if and only if the indexes returned
// by SplitKeys are not the same. SplitKeys will never return -1 for
// [SliceIndex.Key] is guaranteed to return -1 if and only if the indexes
// returned by SplitKeys are not the same. SplitKeys will never return -1 for
// both indexes.
func (si SliceIndex) SplitKeys() (ix, iy int) { return si.xkey, si.ykey }
// MapIndex is an index operation on a map at some index Key.
// MapIndex is a [PathStep] that represents an index operation on a map at some index Key.
type MapIndex struct{ *mapIndex }
type mapIndex struct {
pathStep
@ -266,7 +275,7 @@ func (mi MapIndex) String() string { return fmt.Sprintf("[%#v]",
// Key is the value of the map key.
func (mi MapIndex) Key() reflect.Value { return mi.key }
// Indirect represents pointer indirection on the parent type.
// Indirect is a [PathStep] that represents pointer indirection on the parent type.
type Indirect struct{ *indirect }
type indirect struct {
pathStep
@ -276,7 +285,7 @@ func (in Indirect) Type() reflect.Type { return in.typ }
func (in Indirect) Values() (vx, vy reflect.Value) { return in.vx, in.vy }
func (in Indirect) String() string { return "*" }
// TypeAssertion represents a type assertion on an interface.
// TypeAssertion is a [PathStep] that represents a type assertion on an interface.
type TypeAssertion struct{ *typeAssertion }
type typeAssertion struct {
pathStep
@ -286,7 +295,8 @@ func (ta TypeAssertion) Type() reflect.Type { return ta.typ }
func (ta TypeAssertion) Values() (vx, vy reflect.Value) { return ta.vx, ta.vy }
func (ta TypeAssertion) String() string { return fmt.Sprintf(".(%v)", value.TypeString(ta.typ, false)) }
// Transform is a transformation from the parent type to the current type.
// Transform is a [PathStep] that represents a transformation
// from the parent type to the current type.
type Transform struct{ *transform }
type transform struct {
pathStep
@ -297,13 +307,13 @@ func (tf Transform) Type() reflect.Type { return tf.typ }
func (tf Transform) Values() (vx, vy reflect.Value) { return tf.vx, tf.vy }
func (tf Transform) String() string { return fmt.Sprintf("%s()", tf.trans.name) }
// Name is the name of the Transformer.
// Name is the name of the [Transformer].
func (tf Transform) Name() string { return tf.trans.name }
// Func is the function pointer to the transformer function.
func (tf Transform) Func() reflect.Value { return tf.trans.fnc }
// Option returns the originally constructed Transformer option.
// Option returns the originally constructed [Transformer] option.
// The == operator can be used to detect the exact option used.
func (tf Transform) Option() Option { return tf.trans }

View File

@ -199,7 +199,7 @@ func (opts formatOptions) FormatValue(v reflect.Value, parentKind reflect.Kind,
break
}
sf := t.Field(i)
if supportExporters && !isExported(sf.Name) {
if !isExported(sf.Name) {
vv = retrieveUnexportedField(v, sf, true)
}
s := opts.WithTypeMode(autoType).FormatValue(vv, t.Kind(), ptrs)

15
vendor/github.com/valyala/bytebufferpool/.travis.yml generated vendored Normal file
View File

@ -0,0 +1,15 @@
language: go
go:
- 1.6
script:
# build test for supported platforms
- GOOS=linux go build
- GOOS=darwin go build
- GOOS=freebsd go build
- GOOS=windows go build
- GOARCH=386 go build
# run tests on a standard platform
- go test -v ./...

22
vendor/github.com/valyala/bytebufferpool/LICENSE generated vendored Normal file
View File

@ -0,0 +1,22 @@
The MIT License (MIT)
Copyright (c) 2016 Aliaksandr Valialkin, VertaMedia
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

21
vendor/github.com/valyala/bytebufferpool/README.md generated vendored Normal file
View File

@ -0,0 +1,21 @@
[![Build Status](https://travis-ci.org/valyala/bytebufferpool.svg)](https://travis-ci.org/valyala/bytebufferpool)
[![GoDoc](https://godoc.org/github.com/valyala/bytebufferpool?status.svg)](http://godoc.org/github.com/valyala/bytebufferpool)
[![Go Report](http://goreportcard.com/badge/valyala/bytebufferpool)](http://goreportcard.com/report/valyala/bytebufferpool)
# bytebufferpool
An implementation of a pool of byte buffers with anti-memory-waste protection.
The pool may waste limited amount of memory due to fragmentation.
This amount equals to the maximum total size of the byte buffers
in concurrent use.
# Benchmark results
Currently bytebufferpool is fastest and most effective buffer pool written in Go.
You can find results [here](https://omgnull.github.io/go-benchmark/buffer/).
# bytebufferpool users
* [fasthttp](https://github.com/valyala/fasthttp)
* [quicktemplate](https://github.com/valyala/quicktemplate)

111
vendor/github.com/valyala/bytebufferpool/bytebuffer.go generated vendored Normal file
View File

@ -0,0 +1,111 @@
package bytebufferpool
import "io"
// ByteBuffer provides byte buffer, which can be used for minimizing
// memory allocations.
//
// ByteBuffer may be used with functions appending data to the given []byte
// slice. See example code for details.
//
// Use Get for obtaining an empty byte buffer.
type ByteBuffer struct {
// B is a byte buffer to use in append-like workloads.
// See example code for details.
B []byte
}
// Len returns the size of the byte buffer.
func (b *ByteBuffer) Len() int {
return len(b.B)
}
// ReadFrom implements io.ReaderFrom.
//
// The function appends all the data read from r to b.
func (b *ByteBuffer) ReadFrom(r io.Reader) (int64, error) {
p := b.B
nStart := int64(len(p))
nMax := int64(cap(p))
n := nStart
if nMax == 0 {
nMax = 64
p = make([]byte, nMax)
} else {
p = p[:nMax]
}
for {
if n == nMax {
nMax *= 2
bNew := make([]byte, nMax)
copy(bNew, p)
p = bNew
}
nn, err := r.Read(p[n:])
n += int64(nn)
if err != nil {
b.B = p[:n]
n -= nStart
if err == io.EOF {
return n, nil
}
return n, err
}
}
}
// WriteTo implements io.WriterTo.
func (b *ByteBuffer) WriteTo(w io.Writer) (int64, error) {
n, err := w.Write(b.B)
return int64(n), err
}
// Bytes returns b.B, i.e. all the bytes accumulated in the buffer.
//
// The purpose of this function is bytes.Buffer compatibility.
func (b *ByteBuffer) Bytes() []byte {
return b.B
}
// Write implements io.Writer - it appends p to ByteBuffer.B
func (b *ByteBuffer) Write(p []byte) (int, error) {
b.B = append(b.B, p...)
return len(p), nil
}
// WriteByte appends the byte c to the buffer.
//
// The purpose of this function is bytes.Buffer compatibility.
//
// The function always returns nil.
func (b *ByteBuffer) WriteByte(c byte) error {
b.B = append(b.B, c)
return nil
}
// WriteString appends s to ByteBuffer.B.
func (b *ByteBuffer) WriteString(s string) (int, error) {
b.B = append(b.B, s...)
return len(s), nil
}
// Set sets ByteBuffer.B to p.
func (b *ByteBuffer) Set(p []byte) {
b.B = append(b.B[:0], p...)
}
// SetString sets ByteBuffer.B to s.
func (b *ByteBuffer) SetString(s string) {
b.B = append(b.B[:0], s...)
}
// String returns string representation of ByteBuffer.B.
func (b *ByteBuffer) String() string {
return string(b.B)
}
// Reset makes ByteBuffer.B empty.
func (b *ByteBuffer) Reset() {
b.B = b.B[:0]
}

7
vendor/github.com/valyala/bytebufferpool/doc.go generated vendored Normal file
View File

@ -0,0 +1,7 @@
// Package bytebufferpool implements a pool of byte buffers
// with anti-fragmentation protection.
//
// The pool may waste limited amount of memory due to fragmentation.
// This amount equals to the maximum total size of the byte buffers
// in concurrent use.
package bytebufferpool

151
vendor/github.com/valyala/bytebufferpool/pool.go generated vendored Normal file
View File

@ -0,0 +1,151 @@
package bytebufferpool
import (
"sort"
"sync"
"sync/atomic"
)
const (
minBitSize = 6 // 2**6=64 is a CPU cache line size
steps = 20
minSize = 1 << minBitSize
maxSize = 1 << (minBitSize + steps - 1)
calibrateCallsThreshold = 42000
maxPercentile = 0.95
)
// Pool represents byte buffer pool.
//
// Distinct pools may be used for distinct types of byte buffers.
// Properly determined byte buffer types with their own pools may help reducing
// memory waste.
type Pool struct {
calls [steps]uint64
calibrating uint64
defaultSize uint64
maxSize uint64
pool sync.Pool
}
var defaultPool Pool
// Get returns an empty byte buffer from the pool.
//
// Got byte buffer may be returned to the pool via Put call.
// This reduces the number of memory allocations required for byte buffer
// management.
func Get() *ByteBuffer { return defaultPool.Get() }
// Get returns new byte buffer with zero length.
//
// The byte buffer may be returned to the pool via Put after the use
// in order to minimize GC overhead.
func (p *Pool) Get() *ByteBuffer {
v := p.pool.Get()
if v != nil {
return v.(*ByteBuffer)
}
return &ByteBuffer{
B: make([]byte, 0, atomic.LoadUint64(&p.defaultSize)),
}
}
// Put returns byte buffer to the pool.
//
// ByteBuffer.B mustn't be touched after returning it to the pool.
// Otherwise data races will occur.
func Put(b *ByteBuffer) { defaultPool.Put(b) }
// Put releases byte buffer obtained via Get to the pool.
//
// The buffer mustn't be accessed after returning to the pool.
func (p *Pool) Put(b *ByteBuffer) {
idx := index(len(b.B))
if atomic.AddUint64(&p.calls[idx], 1) > calibrateCallsThreshold {
p.calibrate()
}
maxSize := int(atomic.LoadUint64(&p.maxSize))
if maxSize == 0 || cap(b.B) <= maxSize {
b.Reset()
p.pool.Put(b)
}
}
func (p *Pool) calibrate() {
if !atomic.CompareAndSwapUint64(&p.calibrating, 0, 1) {
return
}
a := make(callSizes, 0, steps)
var callsSum uint64
for i := uint64(0); i < steps; i++ {
calls := atomic.SwapUint64(&p.calls[i], 0)
callsSum += calls
a = append(a, callSize{
calls: calls,
size: minSize << i,
})
}
sort.Sort(a)
defaultSize := a[0].size
maxSize := defaultSize
maxSum := uint64(float64(callsSum) * maxPercentile)
callsSum = 0
for i := 0; i < steps; i++ {
if callsSum > maxSum {
break
}
callsSum += a[i].calls
size := a[i].size
if size > maxSize {
maxSize = size
}
}
atomic.StoreUint64(&p.defaultSize, defaultSize)
atomic.StoreUint64(&p.maxSize, maxSize)
atomic.StoreUint64(&p.calibrating, 0)
}
type callSize struct {
calls uint64
size uint64
}
type callSizes []callSize
func (ci callSizes) Len() int {
return len(ci)
}
func (ci callSizes) Less(i, j int) bool {
return ci[i].calls > ci[j].calls
}
func (ci callSizes) Swap(i, j int) {
ci[i], ci[j] = ci[j], ci[i]
}
func index(n int) int {
n--
n >>= minBitSize
idx := 0
for n > 0 {
n >>= 1
idx++
}
if idx >= steps {
idx = steps - 1
}
return idx
}

1
vendor/github.com/valyala/quicktemplate/.gitignore generated vendored Normal file
View File

@ -0,0 +1 @@
tags

21
vendor/github.com/valyala/quicktemplate/.travis.yml generated vendored Normal file
View File

@ -0,0 +1,21 @@
language: go
go:
- 1.11.x
- 1.12.x
- 1.13.x
- 1.14.x
- tip
before_install:
- go get -u github.com/valyala/quicktemplate/qtc
- go generate
script:
# build test for supported platforms
- GOOS=linux go build
- GOOS=darwin go build
- GOOS=freebsd go build
# run tests on a standard platform
- go test -v ./...

22
vendor/github.com/valyala/quicktemplate/LICENSE generated vendored Normal file
View File

@ -0,0 +1,22 @@
The MIT License (MIT)
Copyright (c) 2016 Aliaksandr Valialkin, VertaMedia
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,16 @@
<filetype binary="false" description="QuickTemplate" name="QuickTemplate">
<highlighting>
<options>
<option name="LINE_COMMENT" value="//" />
<option name="COMMENT_START" value="" />
<option name="COMMENT_END" value="" />
<option name="HEX_PREFIX" value="" />
<option name="NUM_POSTFIXES" value="" />
</options>
<keywords keywords="case;cat;code;collapsespace;comment;default;else;elseif;endcollapsespace;endcomment;endfor;endfunc;endif;endplain;endstripspace;endswitch;for;func;if;import;interface;package;plain;space;stripspace;struct;switch;type" ignore_case="false" />
<keywords3 keywords="{%=;{%=h;{%=j;{%=jh;{%=q;{%=qh;{%=u;{%=uh;{%d;{%d=;{%f;{%f.;{%f.=;{%f=;{%j;{%j=;{%q;{%q=;{%s=;{%u;{%u=;{%uz;{%uz=;{%v;{%v=;{%z;{%z=" />
</highlighting>
<extensionMap>
<mapping ext="qtpl" />
</extensionMap>
</filetype>

649
vendor/github.com/valyala/quicktemplate/README.md generated vendored Normal file
View File

@ -0,0 +1,649 @@
[![Build Status](https://travis-ci.org/valyala/quicktemplate.svg)](https://travis-ci.org/valyala/quicktemplate)
[![GoDoc](https://godoc.org/github.com/valyala/quicktemplate?status.svg)](http://godoc.org/github.com/valyala/quicktemplate)
[![Go Report Card](https://goreportcard.com/badge/github.com/valyala/quicktemplate)](https://goreportcard.com/report/github.com/valyala/quicktemplate)
# quicktemplate
A fast, powerful, yet easy to use template engine for Go.
Inspired by the [Mako templates](http://www.makotemplates.org/) philosophy.
# Features
* [Extremely fast](#performance-comparison-with-htmltemplate).
Templates are converted into Go code and then compiled.
* Quicktemplate syntax is very close to Go - there is no need to learn
yet another template language before starting to use quicktemplate.
* Almost all bugs are caught during template compilation, so production
suffers less from template-related bugs.
* Easy to use. See [quickstart](#quick-start) and [examples](https://github.com/valyala/quicktemplate/tree/master/examples)
for details.
* Powerful. Arbitrary Go code may be embedded into and mixed with templates.
Be careful with this power - do not query the database and/or external resources from
templates unless you miss the PHP way in Go :) This power is mostly for
arbitrary data transformations.
* Easy to use template inheritance powered by [Go interfaces](https://golang.org/doc/effective_go.html#interfaces).
See [this example](https://github.com/valyala/quicktemplate/tree/master/examples/basicserver) for details.
* Templates are compiled into a single binary, so there is no need to copy
template files to the server.
# Drawbacks
* Templates cannot be updated on the fly on the server, since they
are compiled into a single binary.
Take a look at [fasttemplate](https://github.com/valyala/fasttemplate)
if you need a fast template engine for simple dynamically updated templates.
[There are ways](https://www.reddit.com/r/golang/comments/f290ja/hot_reloading_with_quicktemplates_sqlc_and/) to dynamically update the templates during development.
# Performance comparison with html/template
Quicktemplate is more than 20x faster than [html/template](https://golang.org/pkg/html/template/).
The following simple template is used in the benchmark:
* [html/template version](https://github.com/valyala/quicktemplate/blob/master/testdata/templates/bench.tpl)
* [quicktemplate version](https://github.com/valyala/quicktemplate/blob/master/testdata/templates/bench.qtpl)
Benchmark results:
```
$ go test -bench='Benchmark(Quick|HTML)Template' -benchmem github.com/valyala/quicktemplate/tests
BenchmarkQuickTemplate1-4 10000000 120 ns/op 0 B/op 0 allocs/op
BenchmarkQuickTemplate10-4 3000000 441 ns/op 0 B/op 0 allocs/op
BenchmarkQuickTemplate100-4 300000 3945 ns/op 0 B/op 0 allocs/op
BenchmarkHTMLTemplate1-4 500000 2501 ns/op 752 B/op 23 allocs/op
BenchmarkHTMLTemplate10-4 100000 12442 ns/op 3521 B/op 117 allocs/op
BenchmarkHTMLTemplate100-4 10000 123392 ns/op 34498 B/op 1152 allocs/op
```
[goTemplateBenchmark](https://github.com/SlinSo/goTemplateBenchmark) compares QuickTemplate with numerous Go templating packages. QuickTemplate performs favorably.
# Security
* All template placeholders are HTML-escaped by default.
* Template placeholders for JSON strings prevent from `</script>`-based
XSS attacks:
```qtpl
{% func FailedXSS() %}
<script>
var s = {%q= "</script><script>alert('you pwned!')" %};
</script>
{% endfunc %}
```
# Examples
See [examples](https://github.com/valyala/quicktemplate/tree/master/examples).
# Quick start
First of all, install the `quicktemplate` package
and [quicktemplate compiler](https://github.com/valyala/quicktemplate/tree/master/qtc) (`qtc`):
```
go get -u github.com/valyala/quicktemplate
go get -u github.com/valyala/quicktemplate/qtc
```
If you using `go generate`, you just need put following into your `main.go`
Important: please specify your own folder (-dir) to generate template file
```
//go:generate go get -u github.com/valyala/quicktemplate/qtc
//go:generate qtc -dir=app/views
```
Let's start with a minimal template example:
```qtpl
All text outside function templates is treated as comments,
i.e. it is just ignored by quicktemplate compiler (`qtc`). It is for humans.
Hello is a simple template function.
{% func Hello(name string) %}
Hello, {%s name %}!
{% endfunc %}
```
Save this file into a `templates` folder under the name `hello.qtpl`
and run `qtc` inside this folder.
If everything went OK, `hello.qtpl.go` file should appear in the `templates` folder.
This file contains Go code for `hello.qtpl`. Let's use it!
Create a file main.go outside `templates` folder and put the following
code there:
```go
package main
import (
"fmt"
"./templates"
)
func main() {
fmt.Printf("%s\n", templates.Hello("Foo"))
fmt.Printf("%s\n", templates.Hello("Bar"))
}
```
Then issue `go run`. If everything went OK, you'll see something like this:
```
Hello, Foo!
Hello, Bar!
```
Let's create more a complex template which calls other template functions,
contains loops, conditions, breaks, continues and returns.
Put the following template into `templates/greetings.qtpl`:
```qtpl
Greetings greets up to 42 names.
It also greets John differently comparing to others.
{% func Greetings(names []string) %}
{% if len(names) == 0 %}
Nobody to greet :(
{% return %}
{% endif %}
{% for i, name := range names %}
{% if i == 42 %}
I'm tired to greet so many people...
{% break %}
{% elseif name == "John" %}
{%= sayHi("Mr. " + name) %}
{% continue %}
{% else %}
{%= Hello(name) %}
{% endif %}
{% endfor %}
{% endfunc %}
sayHi is unexported, since it starts with lowercase letter.
{% func sayHi(name string) %}
Hi, {%s name %}
{% endfunc %}
Note that every template file may contain an arbitrary number
of template functions. For instance, this file contains Greetings and sayHi
functions.
```
Run `qtc` inside `templates` folder. Now the folder should contain
two files with Go code: `hello.qtpl.go` and `greetings.qtpl.go`. These files
form a single `templates` Go package. Template functions and other template
stuff is shared between template files located in the same folder.
So `Hello` template function may be used inside `greetings.qtpl` while
it is defined in `hello.qtpl`.
Moreover, the folder may contain ordinary Go files, so its contents may
be used inside templates and vice versa.
The package name inside template files may be overriden
with `{% package packageName %}`.
Now put the following code into `main.go`:
```go
package main
import (
"bytes"
"fmt"
"./templates"
)
func main() {
names := []string{"Kate", "Go", "John", "Brad"}
// qtc creates Write* function for each template function.
// Such functions accept io.Writer as first parameter:
var buf bytes.Buffer
templates.WriteGreetings(&buf, names)
fmt.Printf("buf=\n%s", buf.Bytes())
}
```
Careful readers may notice different output tags were used in these
templates: `{%s name %}` and `{%= Hello(name) %}`. What's the difference?
The `{%s x %}` is used for printing HTML-safe strings, while `{%= F() %}`
is used for embedding template function calls. Quicktemplate supports also
other output tags:
* `{%d int %}` and `{%dl int64 %}` `{%dul uint64 %}` for integers.
* `{%f float %}` for float64.
Floating point precision may be set via `{%f.precision float %}`.
For example, `{%f.2 1.2345 %}` outputs `1.23`.
* `{%z bytes %}` for byte slices.
* `{%q str %}` and `{%qz bytes %}` for JSON-compatible quoted strings.
* `{%j str %}` and `{%jz bytes %}` for embedding str into a JSON string. Unlike `{%q str %}`,
it doesn't quote the string.
* `{%u str %}` and `{%uz bytes %}` for [URL encoding](https://en.wikipedia.org/wiki/Percent-encoding)
the given str.
* `{%v anything %}` is equivalent to `%v` in [printf-like functions](https://golang.org/pkg/fmt/).
All the output tags except `{%= F() %}` produce HTML-safe output, i.e. they
escape `<` to `&lt;`, `>` to `&gt;`, etc. If you don't want HTML-safe output,
then just put `=` after the tag. For example: `{%s= "<h1>This h1 won't be escaped</h1>" %}`.
As you may notice `{%= F() %}` and `{%s= F() %}` produce the same output for `{% func F() %}`.
But the first one is optimized for speed - it avoids memory allocations and copies.
It is therefore recommended to stick to it when embedding template function calls.
Additionally, the following extensions are supported for `{%= F() %}`:
* `{%=h F() %}` produces html-escaped output.
* `{%=u F() %}` produces [URL-encoded](https://en.wikipedia.org/wiki/Percent-encoding) output.
* `{%=q F() %}` produces quoted json string.
* `{%=j F() %}` produces json string without quotes.
* `{%=uh F() %}` produces html-safe URL-encoded output.
* `{%=qh F() %}` produces html-safe quoted json string.
* `{%=jh F() %}` produces html-safe json string without quotes.
All output tags except `{%= F() %}` family may contain arbitrary valid
Go expressions instead of just an identifier. For example:
```qtpl
Import fmt for fmt.Sprintf()
{% import "fmt" %}
FmtFunc uses fmt.Sprintf() inside output tag
{% func FmtFunc(s string) %}
{%s fmt.Sprintf("FmtFunc accepted %q string", s) %}
{% endfunc %}
```
There are other useful tags supported by quicktemplate:
* `{% comment %}`
```qtpl
{% comment %}
This is a comment. It won't trap into the output.
It may contain {% arbitrary tags %}. They are just ignored.
{% endcomment %}
```
* `{% plain %}`
```qtpl
{% plain %}
Tags will {% trap into %} the output {% unmodified %}.
Plain block may contain invalid and {% incomplete tags.
{% endplain %}
```
* `{% collapsespace %}`
```qtpl
{% collapsespace %}
<div>
<div>space between lines</div>
and {%s "tags" %}
<div>is collapsed into a single space
unless{% newline %}or{% space %}is used</div>
</div>
{% endcollapsespace %}
```
Is converted into:
```
<div> <div>space between lines</div> and tags <div>is collapsed into a single space unless
or is used</div> </div>
```
* `{% stripspace %}`
```qtpl
{% stripspace %}
<div>
<div>space between lines</div>
and {%s " tags" %}
<div>is removed unless{% newline %}or{% space %}is used</div>
</div>
{% endstripspace %}
```
Is converted into:
```
<div><div>space between lines</div>and tags<div>is removed unless
or is used</div></div>
```
* It is possible removing whitespace before and after the tag by adding `-` after `{%` or prepending `%}` with `-`. For example:
```qtpl
var sum int
{%- for i := 1; i <= 3; i++ -%}
sum += {%d i %}
{%- endfor -%}
return sum
```
Is converted into:
```
var sum int
sum += 1
sum += 2
sum += 3
return sum
```
* `{% switch %}`, `{% case %}` and `{% default %}`:
```qtpl
1 + 1 =
{% switch 1+1 %}
{% case 2 %}
2?
{% case 42 %}
42!
{% default %}
I don't know :(
{% endswitch %}
```
* `{% code %}`:
```qtpl
{% code
// arbitrary Go code may be embedded here!
type FooArg struct {
Name string
Age int
}
%}
```
* `{% package %}`:
```qtpl
Override default package name with the custom name
{% package customPackageName %}
```
* `{% import %}`:
```qtpl
Import external packages.
{% import "foo/bar" %}
{% import (
"foo"
bar "baz/baa"
) %}
```
* `{% cat "/path/to/file" %}`:
```qtpl
Cat emits the given file contents as a plaintext:
{% func passwords() %}
/etc/passwd contents:
{% cat "/etc/passwd" %}
{% endfunc %}
```
* `{% interface %}`:
```qtpl
Interfaces allow powerful templates' inheritance
{%
interface Page {
Title()
Body(s string, n int)
Footer()
}
%}
PrintPage prints Page
{% func PrintPage(p Page) %}
<html>
<head><title>{%= p.Title() %}</title></head>
<body>
<div>{%= p.Body("foo", 42) %}</div>
<div>{%= p.Footer() %}</div>
</body>
</html>
{% endfunc %}
Base page implementation
{% code
type BasePage struct {
TitleStr string
FooterStr string
}
%}
{% func (bp *BasePage) Title() %}{%s bp.TitleStr %}{% endfunc %}
{% func (bp *BasePage) Body(s string, n int) %}
<b>s={%q s %}, n={%d n %}</b>
{% endfunc %}
{% func (bp *BasePage) Footer() %}{%s bp.FooterStr %}{% endfunc %}
Main page implementation
{% code
type MainPage struct {
// inherit from BasePage
BasePage
// real body for main page
BodyStr string
}
%}
Override only Body
Title and Footer are used from BasePage.
{% func (mp *MainPage) Body(s string, n int) %}
<div>
main body: {%s mp.BodyStr %}
</div>
<div>
base body: {%= mp.BasePage.Body(s, n) %}
</div>
{% endfunc %}
```
See [basicserver example](https://github.com/valyala/quicktemplate/tree/master/examples/basicserver)
for more details.
# Performance optimization tips
* Prefer calling `WriteFoo` instead of `Foo` when generating template output
for `{% func Foo() %}`. This avoids unnesessary memory allocation and a copy
for a `string` returned from `Foo()`.
* Prefer `{%= Foo() %}` instead of `{%s= Foo() %}` when embedding
a function template `{% func Foo() %}`. Though both approaches generate
identical output, the first approach is optimized for speed.
* Prefer using existing output tags instead of passing `fmt.Sprintf`
to `{%s %}`. For instance, use `{%d num %}` instead
of `{%s fmt.Sprintf("%d", num) %}`, because the first approach is optimized
for speed.
* Prefer using specific output tags instead of generic output tag
`{%v %}`. For example, use `{%s str %}` instead of `{%v str %}`, since
specific output tags are optimized for speed.
* Prefer creating custom function templates instead of composing complex
strings by hands before passing them to `{%s %}`.
For instance, the first approach is slower than the second one:
```qtpl
{% func Foo(n int) %}
{% code
// construct complex string
complexStr := ""
for i := 0; i < n; i++ {
complexStr += fmt.Sprintf("num %d,", i)
}
%}
complex string = {%s= complexStr %}
{% endfunc %}
```
```qtpl
{% func Foo(n int) %}
complex string = {%= complexStr(n) %}
{% endfunc %}
// Wrap complexStr func into stripspace for stripping unnesessary space
// between tags and lines.
{% stripspace %}
{% func complexStr(n int) %}
{% for i := 0; i < n; i++ %}
num{% space %}{%d i %}{% newline %}
{% endfor %}
{% endfunc %}
{% endstripspace %}
```
* Make sure that the `io.Writer` passed to `Write*` functions
is [buffered](https://golang.org/pkg/bufio/#Writer).
This will minimize the number of `write`
[syscalls](https://en.wikipedia.org/wiki/System_call),
which may be quite expensive.
Note: There is no need to wrap [fasthttp.RequestCtx](https://godoc.org/github.com/valyala/fasthttp#RequestCtx)
into [bufio.Writer](https://golang.org/pkg/bufio/#Writer), since it is already buffered.
* [Profile](http://blog.golang.org/profiling-go-programs) your programs
for memory allocations and fix the most demanding functions based on
the output of `go tool pprof --alloc_objects`.
# Use cases
While the main quicktemplate purpose is generating HTML, it may be used
for generating other data too. For example, JSON and XML marshalling may
be easily implemented with quicktemplate:
```qtpl
{% code
type MarshalRow struct {
Msg string
N int
}
type MarshalData struct {
Foo int
Bar string
Rows []MarshalRow
}
%}
// JSON marshaling
{% stripspace %}
{% func (d *MarshalData) JSON() %}
{
"Foo": {%d d.Foo %},
"Bar": {%q= d.Bar %},
"Rows":[
{% for i, r := range d.Rows %}
{
"Msg": {%q= r.Msg %},
"N": {%d r.N %}
}
{% if i + 1 < len(d.Rows) %},{% endif %}
{% endfor %}
]
}
{% endfunc %}
{% endstripspace %}
// XML marshalling
{% stripspace %}
{% func (d *MarshalData) XML() %}
<MarshalData>
<Foo>{%d d.Foo %}</Foo>
<Bar>{%s d.Bar %}</Bar>
<Rows>
{% for _, r := range d.Rows %}
<Row>
<Msg>{%s r.Msg %}</Msg>
<N>{%d r.N %}</N>
</Row>
{% endfor %}
</Rows>
</MarshalData>
{% endfunc %}
{% endstripspace %}
```
Usually, marshalling built with quicktemplate works faster than the marshalling
implemented via standard [encoding/json](https://golang.org/pkg/encoding/json/)
and [encoding/xml](https://golang.org/pkg/encoding/xml/).
See the corresponding benchmark results:
```
go test -bench=Marshal -benchmem github.com/valyala/quicktemplate/tests
BenchmarkMarshalJSONStd1-4 3000000 480 ns/op 8 B/op 1 allocs/op
BenchmarkMarshalJSONStd10-4 1000000 1842 ns/op 8 B/op 1 allocs/op
BenchmarkMarshalJSONStd100-4 100000 15820 ns/op 8 B/op 1 allocs/op
BenchmarkMarshalJSONStd1000-4 10000 159327 ns/op 59 B/op 1 allocs/op
BenchmarkMarshalJSONQuickTemplate1-4 10000000 162 ns/op 0 B/op 0 allocs/op
BenchmarkMarshalJSONQuickTemplate10-4 2000000 748 ns/op 0 B/op 0 allocs/op
BenchmarkMarshalJSONQuickTemplate100-4 200000 6572 ns/op 0 B/op 0 allocs/op
BenchmarkMarshalJSONQuickTemplate1000-4 20000 66784 ns/op 29 B/op 0 allocs/op
BenchmarkMarshalXMLStd1-4 1000000 1652 ns/op 2 B/op 2 allocs/op
BenchmarkMarshalXMLStd10-4 200000 7533 ns/op 11 B/op 11 allocs/op
BenchmarkMarshalXMLStd100-4 20000 65763 ns/op 195 B/op 101 allocs/op
BenchmarkMarshalXMLStd1000-4 2000 663373 ns/op 3522 B/op 1002 allocs/op
BenchmarkMarshalXMLQuickTemplate1-4 10000000 145 ns/op 0 B/op 0 allocs/op
BenchmarkMarshalXMLQuickTemplate10-4 3000000 597 ns/op 0 B/op 0 allocs/op
BenchmarkMarshalXMLQuickTemplate100-4 300000 5833 ns/op 0 B/op 0 allocs/op
BenchmarkMarshalXMLQuickTemplate1000-4 30000 53000 ns/op 32 B/op 0 allocs/op
```
# FAQ
* *Why is the quicktemplate syntax incompatible with [html/template](https://golang.org/pkg/html/template/)?*
Because `html/template` syntax isn't expressive enough for `quicktemplate`.
* *What's the difference between quicktemplate and [ego](https://github.com/benbjohnson/ego)?*
`Ego` is similar to `quicktemplate` in the sense it converts templates into Go code.
But it misses the following stuff, which makes `quicktemplate` so powerful
and easy to use:
* Defining multiple function templates in a single template file.
* Embedding function templates inside other function templates.
* Template interfaces, inheritance and overriding.
See [this example](https://github.com/valyala/quicktemplate/tree/master/examples/basicserver)
for details.
* Top-level comments outside function templates.
* Template packages.
* Combining arbitrary Go files with template files in template packages.
* Performance optimizations.
* *What's the difference between quicktemplate and [gorazor](https://github.com/sipin/gorazor)?*
`Gorazor` is similar to `quicktemplate` in the sense it converts templates into Go code.
But it misses the following useful features:
* Clear syntax instead of hard-to-understand magic stuff related
to template arguments, template inheritance and embedding function
templates into other templates.
* *Is there a syntax highlighting for qtpl files?*
Yes - see [this issue](https://github.com/valyala/quicktemplate/issues/19) for details.
If you are using JetBrains products (syntax highlighting and autocomplete):
* cd [JetBrains settings directory](https://intellij-support.jetbrains.com/hc/en-us/articles/206544519-Directories-used-by-the-IDE-to-store-settings-caches-plugins-and-logs)
* mkdir -p filetypes && cd filetypes
* curl https://raw.githubusercontent.com/valyala/quicktemplate/master/QuickTemplate.xml >> QuickTemplate.xml
* Restart your IDE
* *I didn't find an answer for my question here.*
Try exploring [these questions](https://github.com/valyala/quicktemplate/issues?q=label%3Aquestion).

45
vendor/github.com/valyala/quicktemplate/bytebuffer.go generated vendored Normal file
View File

@ -0,0 +1,45 @@
package quicktemplate
import (
"github.com/valyala/bytebufferpool"
)
// ByteBuffer implements io.Writer on top of byte slice.
//
// Recycle byte buffers via AcquireByteBuffer and ReleaseByteBuffer
// in order to reduce memory allocations.
//
// Deprecated: use github.com/valyala/bytebufferpool instead.
type ByteBuffer bytebufferpool.ByteBuffer
// Write implements io.Writer.
func (b *ByteBuffer) Write(p []byte) (int, error) {
return bb(b).Write(p)
}
// Reset resets the byte buffer.
func (b *ByteBuffer) Reset() {
bb(b).Reset()
}
// AcquireByteBuffer returns new ByteBuffer from the pool.
//
// Return unneeded buffers to the pool by calling ReleaseByteBuffer
// in order to reduce memory allocations.
func AcquireByteBuffer() *ByteBuffer {
return (*ByteBuffer)(byteBufferPool.Get())
}
// ReleaseByteBuffer retruns byte buffer to the pool.
//
// Do not access byte buffer after returning it to the pool,
// otherwise data races may occur.
func ReleaseByteBuffer(b *ByteBuffer) {
byteBufferPool.Put(bb(b))
}
func bb(b *ByteBuffer) *bytebufferpool.ByteBuffer {
return (*bytebufferpool.ByteBuffer)(b)
}
var byteBufferPool bytebufferpool.Pool

6
vendor/github.com/valyala/quicktemplate/doc.go generated vendored Normal file
View File

@ -0,0 +1,6 @@
/*
Package quicktemplate provides fast and powerful template engine.
See https://github.com/valyala/quicktemplate for details.
*/
package quicktemplate

View File

@ -0,0 +1,62 @@
package quicktemplate
import (
"bytes"
"io"
)
type htmlEscapeWriter struct {
w io.Writer
}
func (w *htmlEscapeWriter) Write(b []byte) (int, error) {
if bytes.IndexByte(b, '<') < 0 &&
bytes.IndexByte(b, '>') < 0 &&
bytes.IndexByte(b, '"') < 0 &&
bytes.IndexByte(b, '\'') < 0 &&
bytes.IndexByte(b, '&') < 0 {
// fast path - nothing to escape
return w.w.Write(b)
}
// slow path
write := w.w.Write
j := 0
for i, c := range b {
switch c {
case '<':
write(b[j:i])
write(strLT)
j = i + 1
case '>':
write(b[j:i])
write(strGT)
j = i + 1
case '"':
write(b[j:i])
write(strQuot)
j = i + 1
case '\'':
write(b[j:i])
write(strApos)
j = i + 1
case '&':
write(b[j:i])
write(strAmp)
j = i + 1
}
}
if n, err := write(b[j:]); err != nil {
return j + n, err
}
return len(b), nil
}
var (
strLT = []byte("&lt;")
strGT = []byte("&gt;")
strQuot = []byte("&quot;")
strApos = []byte("&#39;")
strAmp = []byte("&amp;")
)

65
vendor/github.com/valyala/quicktemplate/jsonstring.go generated vendored Normal file
View File

@ -0,0 +1,65 @@
package quicktemplate
import (
"fmt"
"strings"
)
func hasSpecialChars(s string) bool {
if strings.IndexByte(s, '"') >= 0 || strings.IndexByte(s, '\\') >= 0 || strings.IndexByte(s, '<') >= 0 || strings.IndexByte(s, '\'') >= 0 {
return true
}
for i := 0; i < len(s); i++ {
if s[i] < 0x20 {
return true
}
}
return false
}
func appendJSONString(dst []byte, s string, addQuotes bool) []byte {
if !hasSpecialChars(s) {
// Fast path - nothing to escape.
if !addQuotes {
return append(dst, s...)
}
dst = append(dst, '"')
dst = append(dst, s...)
dst = append(dst, '"')
return dst
}
// Slow path - there are chars to escape.
if addQuotes {
dst = append(dst, '"')
}
bb := AcquireByteBuffer()
var tmp []byte
tmp, bb.B = bb.B, dst
_, err := jsonReplacer.WriteString(bb, s)
if err != nil {
panic(fmt.Errorf("BUG: unexpected error returned from jsonReplacer.WriteString: %s", err))
}
dst, bb.B = bb.B, tmp
ReleaseByteBuffer(bb)
if addQuotes {
dst = append(dst, '"')
}
return dst
}
var jsonReplacer = strings.NewReplacer(func() []string {
a := []string{
"\n", `\n`,
"\r", `\r`,
"\t", `\t`,
"\"", `\"`,
"\\", `\\`,
"<", `\u003c`,
"'", `\u0027`,
}
for i := 0; i < 0x20; i++ {
a = append(a, string([]byte{byte(i)}), fmt.Sprintf(`\u%04x`, i))
}
return a
}()...)

32
vendor/github.com/valyala/quicktemplate/urlencode.go generated vendored Normal file
View File

@ -0,0 +1,32 @@
package quicktemplate
func appendURLEncode(dst []byte, src string) []byte {
n := len(src)
if n > 0 {
// Hint the compiler to remove bounds checks in the loop below.
_ = src[n-1]
}
for i := 0; i < n; i++ {
c := src[i]
// See http://www.w3.org/TR/html5/forms.html#form-submission-algorithm
if c >= 'a' && c <= 'z' || c >= 'A' && c <= 'Z' || c >= '0' && c <= '9' ||
c == '-' || c == '.' || c == '_' {
dst = append(dst, c)
} else {
if c == ' ' {
dst = append(dst, '+')
} else {
dst = append(dst, '%', hexCharUpper(c>>4), hexCharUpper(c&15))
}
}
}
return dst
}
func hexCharUpper(c byte) byte {
if c < 10 {
return '0' + c
}
return c - 10 + 'A'
}

3
vendor/github.com/valyala/quicktemplate/util.go generated vendored Normal file
View File

@ -0,0 +1,3 @@
package quicktemplate
//go:generate qtc -dir=testdata/templates

View File

@ -0,0 +1,11 @@
// +build appengine appenginevm
package quicktemplate
func unsafeStrToBytes(s string) []byte {
return []byte(s)
}
func unsafeBytesToStr(z []byte) string {
return string(z)
}

View File

@ -0,0 +1,21 @@
// +build !appengine,!appenginevm
package quicktemplate
import (
"reflect"
"unsafe"
)
func unsafeStrToBytes(s string) (b []byte) {
sh := (*reflect.StringHeader)(unsafe.Pointer(&s))
bh := (*reflect.SliceHeader)(unsafe.Pointer(&b))
bh.Data = sh.Data
bh.Len = sh.Len
bh.Cap = sh.Len
return b
}
func unsafeBytesToStr(z []byte) string {
return *(*string)(unsafe.Pointer(&z))
}

220
vendor/github.com/valyala/quicktemplate/writer.go generated vendored Normal file
View File

@ -0,0 +1,220 @@
package quicktemplate
import (
"fmt"
"io"
"strconv"
"sync"
)
// Writer implements auxiliary writer used by quicktemplate functions.
//
// Use AcquireWriter for creating new writers.
type Writer struct {
e QWriter
n QWriter
}
// W returns the underlying writer passed to AcquireWriter.
func (qw *Writer) W() io.Writer {
return qw.n.w
}
// E returns QWriter with enabled html escaping.
func (qw *Writer) E() *QWriter {
return &qw.e
}
// N returns QWriter without html escaping.
func (qw *Writer) N() *QWriter {
return &qw.n
}
// AcquireWriter returns new writer from the pool.
//
// Return unneeded writer to the pool by calling ReleaseWriter
// in order to reduce memory allocations.
func AcquireWriter(w io.Writer) *Writer {
v := writerPool.Get()
if v == nil {
qw := &Writer{}
qw.e.w = &htmlEscapeWriter{}
v = qw
}
qw := v.(*Writer)
qw.e.w.(*htmlEscapeWriter).w = w
qw.n.w = w
return qw
}
// ReleaseWriter returns the writer to the pool.
//
// Do not access released writer, otherwise data races may occur.
func ReleaseWriter(qw *Writer) {
hw := qw.e.w.(*htmlEscapeWriter)
hw.w = nil
qw.e.Reset()
qw.e.w = hw
qw.n.Reset()
writerPool.Put(qw)
}
var writerPool sync.Pool
// QWriter is auxiliary writer used by Writer.
type QWriter struct {
w io.Writer
err error
b []byte
}
// Write implements io.Writer.
func (w *QWriter) Write(p []byte) (int, error) {
if w.err != nil {
return 0, w.err
}
n, err := w.w.Write(p)
if err != nil {
w.err = err
}
return n, err
}
// Reset resets QWriter to the original state.
func (w *QWriter) Reset() {
w.w = nil
w.err = nil
}
// S writes s to w.
func (w *QWriter) S(s string) {
w.Write(unsafeStrToBytes(s))
}
// Z writes z to w.
func (w *QWriter) Z(z []byte) {
w.Write(z)
}
// SZ is a synonym to Z.
func (w *QWriter) SZ(z []byte) {
w.Write(z)
}
// D writes n to w.
func (w *QWriter) D(n int) {
bb, ok := w.w.(*ByteBuffer)
if ok {
bb.B = strconv.AppendInt(bb.B, int64(n), 10)
} else {
w.b = strconv.AppendInt(w.b[:0], int64(n), 10)
w.Write(w.b)
}
}
// DL writes n to w
func (w *QWriter) DL(n int64) {
bb, ok := w.w.(*ByteBuffer)
if ok {
bb.B = strconv.AppendInt(bb.B, n, 10)
} else {
w.b = strconv.AppendInt(w.b[:0], n, 10)
w.Write(w.b)
}
}
// DUL writes n to w
func (w *QWriter) DUL(n uint64) {
bb, ok := w.w.(*ByteBuffer)
if ok {
bb.B = strconv.AppendUint(bb.B, n, 10)
} else {
w.b = strconv.AppendUint(w.b[:0], n, 10)
w.Write(w.b)
}
}
// F writes f to w.
func (w *QWriter) F(f float64) {
n := int(f)
if float64(n) == f {
// Fast path - just int.
w.D(n)
return
}
// Slow path.
w.FPrec(f, -1)
}
// FPrec writes f to w using the given floating point precision.
func (w *QWriter) FPrec(f float64, prec int) {
bb, ok := w.w.(*ByteBuffer)
if ok {
bb.B = strconv.AppendFloat(bb.B, f, 'f', prec, 64)
} else {
w.b = strconv.AppendFloat(w.b[:0], f, 'f', prec, 64)
w.Write(w.b)
}
}
// Q writes quoted json-safe s to w.
func (w *QWriter) Q(s string) {
bb, ok := w.w.(*ByteBuffer)
if ok {
bb.B = appendJSONString(bb.B, s, true)
} else {
w.b = appendJSONString(w.b[:0], s, true)
w.Write(w.b)
}
}
var strQuote = []byte(`"`)
// QZ writes quoted json-safe z to w.
func (w *QWriter) QZ(z []byte) {
w.Q(unsafeBytesToStr(z))
}
// J writes json-safe s to w.
//
// Unlike Q it doesn't qoute resulting s.
func (w *QWriter) J(s string) {
bb, ok := w.w.(*ByteBuffer)
if ok {
bb.B = appendJSONString(bb.B, s, false)
} else {
w.b = appendJSONString(w.b[:0], s, false)
w.Write(w.b)
}
}
// JZ writes json-safe z to w.
//
// Unlike Q it doesn't qoute resulting z.
func (w *QWriter) JZ(z []byte) {
w.J(unsafeBytesToStr(z))
}
// V writes v to w.
func (w *QWriter) V(v interface{}) {
fmt.Fprintf(w, "%v", v)
}
// U writes url-encoded s to w.
func (w *QWriter) U(s string) {
bb, ok := w.w.(*ByteBuffer)
if ok {
bb.B = appendURLEncode(bb.B, s)
} else {
w.b = appendURLEncode(w.b[:0], s)
w.Write(w.b)
}
}
// UZ writes url-encoded z to w.
func (w *QWriter) UZ(z []byte) {
w.U(unsafeBytesToStr(z))
}

27
vendor/golang.org/x/text/LICENSE generated vendored Normal file
View File

@ -0,0 +1,27 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/text/PATENTS generated vendored Normal file
View File

@ -0,0 +1,22 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

70
vendor/golang.org/x/text/feature/plural/common.go generated vendored Normal file
View File

@ -0,0 +1,70 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
package plural
// Form defines a plural form.
//
// Not all languages support all forms. Also, the meaning of each form varies
// per language. It is important to note that the name of a form does not
// necessarily correspond one-to-one with the set of numbers. For instance,
// for Croation, One matches not only 1, but also 11, 21, etc.
//
// Each language must at least support the form "other".
type Form byte
const (
Other Form = iota
Zero
One
Two
Few
Many
)
var countMap = map[string]Form{
"other": Other,
"zero": Zero,
"one": One,
"two": Two,
"few": Few,
"many": Many,
}
type pluralCheck struct {
// category:
// 3..7: opID
// 0..2: category
cat byte
setID byte
}
// opID identifies the type of operand in the plural rule, being i, n or f.
// (v, w, and t are treated as filters in our implementation.)
type opID byte
const (
opMod opID = 0x1 // is '%' used?
opNotEqual opID = 0x2 // using "!=" to compare
opI opID = 0 << 2 // integers after taking the absolute value
opN opID = 1 << 2 // full number (must be integer)
opF opID = 2 << 2 // fraction
opV opID = 3 << 2 // number of visible digits
opW opID = 4 << 2 // number of visible digits without trailing zeros
opBretonM opID = 5 << 2 // hard-wired rule for Breton
opItalian800 opID = 6 << 2 // hard-wired rule for Italian
opAzerbaijan00s opID = 7 << 2 // hard-wired rule for Azerbaijan
)
const (
// Use this plural form to indicate the next rule needs to match as well.
// The last condition in the list will have the correct plural form.
andNext = 0x7
formMask = 0x7
opShift = 3
// numN indicates the maximum integer, or maximum mod value, for which we
// have inclusion masks.
numN = 100
// The common denominator of the modulo that is taken.
maxMod = 100
)

244
vendor/golang.org/x/text/feature/plural/message.go generated vendored Normal file
View File

@ -0,0 +1,244 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package plural
import (
"fmt"
"io"
"reflect"
"strconv"
"golang.org/x/text/internal/catmsg"
"golang.org/x/text/internal/number"
"golang.org/x/text/language"
"golang.org/x/text/message/catalog"
)
// TODO: consider deleting this interface. Maybe VisibleDigits is always
// sufficient and practical.
// Interface is used for types that can determine their own plural form.
type Interface interface {
// PluralForm reports the plural form for the given language of the
// underlying value. It also returns the integer value. If the integer value
// is larger than fits in n, PluralForm may return a value modulo
// 10,000,000.
PluralForm(t language.Tag, scale int) (f Form, n int)
}
// Selectf returns the first case for which its selector is a match for the
// arg-th substitution argument to a formatting call, formatting it as indicated
// by format.
//
// The cases argument are pairs of selectors and messages. Selectors are of type
// string or Form. Messages are of type string or catalog.Message. A selector
// matches an argument if:
// - it is "other" or Other
// - it matches the plural form of the argument: "zero", "one", "two", "few",
// or "many", or the equivalent Form
// - it is of the form "=x" where x is an integer that matches the value of
// the argument.
// - it is of the form "<x" where x is an integer that is larger than the
// argument.
//
// The format argument determines the formatting parameters for which to
// determine the plural form. This is especially relevant for non-integer
// values.
//
// The format string may be "", in which case a best-effort attempt is made to
// find a reasonable representation on which to base the plural form. Examples
// of format strings are:
// - %.2f decimal with scale 2
// - %.2e scientific notation with precision 3 (scale + 1)
// - %d integer
func Selectf(arg int, format string, cases ...interface{}) catalog.Message {
var p parser
// Intercept the formatting parameters of format by doing a dummy print.
fmt.Fprintf(io.Discard, format, &p)
m := &message{arg, kindDefault, 0, cases}
switch p.verb {
case 'g':
m.kind = kindPrecision
m.scale = p.scale
case 'f':
m.kind = kindScale
m.scale = p.scale
case 'e':
m.kind = kindScientific
m.scale = p.scale
case 'd':
m.kind = kindScale
m.scale = 0
default:
// TODO: do we need to handle errors?
}
return m
}
type parser struct {
verb rune
scale int
}
func (p *parser) Format(s fmt.State, verb rune) {
p.verb = verb
p.scale = -1
if prec, ok := s.Precision(); ok {
p.scale = prec
}
}
type message struct {
arg int
kind int
scale int
cases []interface{}
}
const (
// Start with non-ASCII to allow skipping values.
kindDefault = 0x80 + iota
kindScale // verb f, number of fraction digits follows
kindScientific // verb e, number of fraction digits follows
kindPrecision // verb g, number of significant digits follows
)
var handle = catmsg.Register("golang.org/x/text/feature/plural:plural", execute)
func (m *message) Compile(e *catmsg.Encoder) error {
e.EncodeMessageType(handle)
e.EncodeUint(uint64(m.arg))
e.EncodeUint(uint64(m.kind))
if m.kind > kindDefault {
e.EncodeUint(uint64(m.scale))
}
forms := validForms(cardinal, e.Language())
for i := 0; i < len(m.cases); {
if err := compileSelector(e, forms, m.cases[i]); err != nil {
return err
}
if i++; i >= len(m.cases) {
return fmt.Errorf("plural: no message defined for selector %v", m.cases[i-1])
}
var msg catalog.Message
switch x := m.cases[i].(type) {
case string:
msg = catalog.String(x)
case catalog.Message:
msg = x
default:
return fmt.Errorf("plural: message of type %T; must be string or catalog.Message", x)
}
if err := e.EncodeMessage(msg); err != nil {
return err
}
i++
}
return nil
}
func compileSelector(e *catmsg.Encoder, valid []Form, selector interface{}) error {
form := Other
switch x := selector.(type) {
case string:
if x == "" {
return fmt.Errorf("plural: empty selector")
}
if c := x[0]; c == '=' || c == '<' {
val, err := strconv.ParseUint(x[1:], 10, 16)
if err != nil {
return fmt.Errorf("plural: invalid number in selector %q: %v", selector, err)
}
e.EncodeUint(uint64(c))
e.EncodeUint(val)
return nil
}
var ok bool
form, ok = countMap[x]
if !ok {
return fmt.Errorf("plural: invalid plural form %q", selector)
}
case Form:
form = x
default:
return fmt.Errorf("plural: selector of type %T; want string or Form", selector)
}
ok := false
for _, f := range valid {
if f == form {
ok = true
break
}
}
if !ok {
return fmt.Errorf("plural: form %q not supported for language %q", selector, e.Language())
}
e.EncodeUint(uint64(form))
return nil
}
func execute(d *catmsg.Decoder) bool {
lang := d.Language()
argN := int(d.DecodeUint())
kind := int(d.DecodeUint())
scale := -1 // default
if kind > kindDefault {
scale = int(d.DecodeUint())
}
form := Other
n := -1
if arg := d.Arg(argN); arg == nil {
// Default to Other.
} else if x, ok := arg.(number.VisibleDigits); ok {
d := x.Digits(nil, lang, scale)
form, n = cardinal.matchDisplayDigits(lang, &d)
} else if x, ok := arg.(Interface); ok {
// This covers lists and formatters from the number package.
form, n = x.PluralForm(lang, scale)
} else {
var f number.Formatter
switch kind {
case kindScale:
f.InitDecimal(lang)
f.SetScale(scale)
case kindScientific:
f.InitScientific(lang)
f.SetScale(scale)
case kindPrecision:
f.InitDecimal(lang)
f.SetPrecision(scale)
case kindDefault:
// sensible default
f.InitDecimal(lang)
if k := reflect.TypeOf(arg).Kind(); reflect.Int <= k && k <= reflect.Uintptr {
f.SetScale(0)
} else {
f.SetScale(2)
}
}
var dec number.Decimal // TODO: buffer in Printer
dec.Convert(f.RoundingContext, arg)
v := number.FormatDigits(&dec, f.RoundingContext)
if !v.NaN && !v.Inf {
form, n = cardinal.matchDisplayDigits(d.Language(), &v)
}
}
for !d.Done() {
f := d.DecodeUint()
if (f == '=' && n == int(d.DecodeUint())) ||
(f == '<' && 0 <= n && n < int(d.DecodeUint())) ||
form == Form(f) ||
Other == Form(f) {
return d.ExecuteMessage()
}
d.SkipMessage()
}
return false
}

262
vendor/golang.org/x/text/feature/plural/plural.go generated vendored Normal file
View File

@ -0,0 +1,262 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen.go gen_common.go
// Package plural provides utilities for handling linguistic plurals in text.
//
// The definitions in this package are based on the plural rule handling defined
// in CLDR. See
// https://unicode.org/reports/tr35/tr35-numbers.html#Language_Plural_Rules for
// details.
package plural
import (
"golang.org/x/text/internal/language/compact"
"golang.org/x/text/internal/number"
"golang.org/x/text/language"
)
// Rules defines the plural rules for all languages for a certain plural type.
//
// This package is UNDER CONSTRUCTION and its API may change.
type Rules struct {
rules []pluralCheck
index []byte
langToIndex []byte
inclusionMasks []uint64
}
var (
// Cardinal defines the plural rules for numbers indicating quantities.
Cardinal *Rules = cardinal
// Ordinal defines the plural rules for numbers indicating position
// (first, second, etc.).
Ordinal *Rules = ordinal
ordinal = &Rules{
ordinalRules,
ordinalIndex,
ordinalLangToIndex,
ordinalInclusionMasks[:],
}
cardinal = &Rules{
cardinalRules,
cardinalIndex,
cardinalLangToIndex,
cardinalInclusionMasks[:],
}
)
// getIntApprox converts the digits in slice digits[start:end] to an integer
// according to the following rules:
// - Let i be asInt(digits[start:end]), where out-of-range digits are assumed
// to be zero.
// - Result n is big if i / 10^nMod > 1.
// - Otherwise the result is i % 10^nMod.
//
// For example, if digits is {1, 2, 3} and start:end is 0:5, then the result
// for various values of nMod is:
// - when nMod == 2, n == big
// - when nMod == 3, n == big
// - when nMod == 4, n == big
// - when nMod == 5, n == 12300
// - when nMod == 6, n == 12300
// - when nMod == 7, n == 12300
func getIntApprox(digits []byte, start, end, nMod, big int) (n int) {
// Leading 0 digits just result in 0.
p := start
if p < 0 {
p = 0
}
// Range only over the part for which we have digits.
mid := end
if mid >= len(digits) {
mid = len(digits)
}
// Check digits more significant that nMod.
if q := end - nMod; q > 0 {
if q > mid {
q = mid
}
for ; p < q; p++ {
if digits[p] != 0 {
return big
}
}
}
for ; p < mid; p++ {
n = 10*n + int(digits[p])
}
// Multiply for trailing zeros.
for ; p < end; p++ {
n *= 10
}
return n
}
// MatchDigits computes the plural form for the given language and the given
// decimal floating point digits. The digits are stored in big-endian order and
// are of value byte(0) - byte(9). The floating point position is indicated by
// exp and the number of visible decimals is scale. All leading and trailing
// zeros may be omitted from digits.
//
// The following table contains examples of possible arguments to represent
// the given numbers.
//
// decimal digits exp scale
// 123 []byte{1, 2, 3} 3 0
// 123.4 []byte{1, 2, 3, 4} 3 1
// 123.40 []byte{1, 2, 3, 4} 3 2
// 100000 []byte{1} 6 0
// 100000.00 []byte{1} 6 3
func (p *Rules) MatchDigits(t language.Tag, digits []byte, exp, scale int) Form {
index := tagToID(t)
// Differentiate up to including mod 1000000 for the integer part.
n := getIntApprox(digits, 0, exp, 6, 1000000)
// Differentiate up to including mod 100 for the fractional part.
f := getIntApprox(digits, exp, exp+scale, 2, 100)
return matchPlural(p, index, n, f, scale)
}
func (p *Rules) matchDisplayDigits(t language.Tag, d *number.Digits) (Form, int) {
n := getIntApprox(d.Digits, 0, int(d.Exp), 6, 1000000)
return p.MatchDigits(t, d.Digits, int(d.Exp), d.NumFracDigits()), n
}
func validForms(p *Rules, t language.Tag) (forms []Form) {
offset := p.langToIndex[tagToID(t)]
rules := p.rules[p.index[offset]:p.index[offset+1]]
forms = append(forms, Other)
last := Other
for _, r := range rules {
if cat := Form(r.cat & formMask); cat != andNext && last != cat {
forms = append(forms, cat)
last = cat
}
}
return forms
}
func (p *Rules) matchComponents(t language.Tag, n, f, scale int) Form {
return matchPlural(p, tagToID(t), n, f, scale)
}
// MatchPlural returns the plural form for the given language and plural
// operands (as defined in
// https://unicode.org/reports/tr35/tr35-numbers.html#Language_Plural_Rules):
//
// where
// n absolute value of the source number (integer and decimals)
// input
// i integer digits of n.
// v number of visible fraction digits in n, with trailing zeros.
// w number of visible fraction digits in n, without trailing zeros.
// f visible fractional digits in n, with trailing zeros (f = t * 10^(v-w))
// t visible fractional digits in n, without trailing zeros.
//
// If any of the operand values is too large to fit in an int, it is okay to
// pass the value modulo 10,000,000.
func (p *Rules) MatchPlural(lang language.Tag, i, v, w, f, t int) Form {
return matchPlural(p, tagToID(lang), i, f, v)
}
func matchPlural(p *Rules, index compact.ID, n, f, v int) Form {
nMask := p.inclusionMasks[n%maxMod]
// Compute the fMask inline in the rules below, as it is relatively rare.
// fMask := p.inclusionMasks[f%maxMod]
vMask := p.inclusionMasks[v%maxMod]
// Do the matching
offset := p.langToIndex[index]
rules := p.rules[p.index[offset]:p.index[offset+1]]
for i := 0; i < len(rules); i++ {
rule := rules[i]
setBit := uint64(1 << rule.setID)
var skip bool
switch op := opID(rule.cat >> opShift); op {
case opI: // i = x
skip = n >= numN || nMask&setBit == 0
case opI | opNotEqual: // i != x
skip = n < numN && nMask&setBit != 0
case opI | opMod: // i % m = x
skip = nMask&setBit == 0
case opI | opMod | opNotEqual: // i % m != x
skip = nMask&setBit != 0
case opN: // n = x
skip = f != 0 || n >= numN || nMask&setBit == 0
case opN | opNotEqual: // n != x
skip = f == 0 && n < numN && nMask&setBit != 0
case opN | opMod: // n % m = x
skip = f != 0 || nMask&setBit == 0
case opN | opMod | opNotEqual: // n % m != x
skip = f == 0 && nMask&setBit != 0
case opF: // f = x
skip = f >= numN || p.inclusionMasks[f%maxMod]&setBit == 0
case opF | opNotEqual: // f != x
skip = f < numN && p.inclusionMasks[f%maxMod]&setBit != 0
case opF | opMod: // f % m = x
skip = p.inclusionMasks[f%maxMod]&setBit == 0
case opF | opMod | opNotEqual: // f % m != x
skip = p.inclusionMasks[f%maxMod]&setBit != 0
case opV: // v = x
skip = v < numN && vMask&setBit == 0
case opV | opNotEqual: // v != x
skip = v < numN && vMask&setBit != 0
case opW: // w == 0
skip = f != 0
case opW | opNotEqual: // w != 0
skip = f == 0
// Hard-wired rules that cannot be handled by our algorithm.
case opBretonM:
skip = f != 0 || n == 0 || n%1000000 != 0
case opAzerbaijan00s:
// 100,200,300,400,500,600,700,800,900
skip = n == 0 || n >= 1000 || n%100 != 0
case opItalian800:
skip = (f != 0 || n >= numN || nMask&setBit == 0) && n != 800
}
if skip {
// advance over AND entries.
for ; i < len(rules) && rules[i].cat&formMask == andNext; i++ {
}
continue
}
// return if we have a final entry.
if cat := rule.cat & formMask; cat != andNext {
return Form(cat)
}
}
return Other
}
func tagToID(t language.Tag) compact.ID {
id, _ := compact.RegionalID(compact.Tag(t))
return id
}

552
vendor/golang.org/x/text/feature/plural/tables.go generated vendored Normal file
View File

@ -0,0 +1,552 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
package plural
// CLDRVersion is the CLDR version from which the tables in this package are derived.
const CLDRVersion = "32"
var ordinalRules = []pluralCheck{ // 64 elements
0: {cat: 0x2f, setID: 0x4},
1: {cat: 0x3a, setID: 0x5},
2: {cat: 0x22, setID: 0x1},
3: {cat: 0x22, setID: 0x6},
4: {cat: 0x22, setID: 0x7},
5: {cat: 0x2f, setID: 0x8},
6: {cat: 0x3c, setID: 0x9},
7: {cat: 0x2f, setID: 0xa},
8: {cat: 0x3c, setID: 0xb},
9: {cat: 0x2c, setID: 0xc},
10: {cat: 0x24, setID: 0xd},
11: {cat: 0x2d, setID: 0xe},
12: {cat: 0x2d, setID: 0xf},
13: {cat: 0x2f, setID: 0x10},
14: {cat: 0x35, setID: 0x3},
15: {cat: 0xc5, setID: 0x11},
16: {cat: 0x2, setID: 0x1},
17: {cat: 0x5, setID: 0x3},
18: {cat: 0xd, setID: 0x12},
19: {cat: 0x22, setID: 0x1},
20: {cat: 0x2f, setID: 0x13},
21: {cat: 0x3d, setID: 0x14},
22: {cat: 0x2f, setID: 0x15},
23: {cat: 0x3a, setID: 0x16},
24: {cat: 0x2f, setID: 0x17},
25: {cat: 0x3b, setID: 0x18},
26: {cat: 0x2f, setID: 0xa},
27: {cat: 0x3c, setID: 0xb},
28: {cat: 0x22, setID: 0x1},
29: {cat: 0x23, setID: 0x19},
30: {cat: 0x24, setID: 0x1a},
31: {cat: 0x22, setID: 0x1b},
32: {cat: 0x23, setID: 0x2},
33: {cat: 0x24, setID: 0x1a},
34: {cat: 0xf, setID: 0x15},
35: {cat: 0x1a, setID: 0x16},
36: {cat: 0xf, setID: 0x17},
37: {cat: 0x1b, setID: 0x18},
38: {cat: 0xf, setID: 0x1c},
39: {cat: 0x1d, setID: 0x1d},
40: {cat: 0xa, setID: 0x1e},
41: {cat: 0xa, setID: 0x1f},
42: {cat: 0xc, setID: 0x20},
43: {cat: 0xe4, setID: 0x0},
44: {cat: 0x5, setID: 0x3},
45: {cat: 0xd, setID: 0xe},
46: {cat: 0xd, setID: 0x21},
47: {cat: 0x22, setID: 0x1},
48: {cat: 0x23, setID: 0x19},
49: {cat: 0x24, setID: 0x1a},
50: {cat: 0x25, setID: 0x22},
51: {cat: 0x22, setID: 0x23},
52: {cat: 0x23, setID: 0x19},
53: {cat: 0x24, setID: 0x1a},
54: {cat: 0x25, setID: 0x22},
55: {cat: 0x22, setID: 0x24},
56: {cat: 0x23, setID: 0x19},
57: {cat: 0x24, setID: 0x1a},
58: {cat: 0x25, setID: 0x22},
59: {cat: 0x21, setID: 0x25},
60: {cat: 0x22, setID: 0x1},
61: {cat: 0x23, setID: 0x2},
62: {cat: 0x24, setID: 0x26},
63: {cat: 0x25, setID: 0x27},
} // Size: 152 bytes
var ordinalIndex = []uint8{ // 22 elements
0x00, 0x00, 0x02, 0x03, 0x04, 0x05, 0x07, 0x09,
0x0b, 0x0f, 0x10, 0x13, 0x16, 0x1c, 0x1f, 0x22,
0x28, 0x2f, 0x33, 0x37, 0x3b, 0x40,
} // Size: 46 bytes
var ordinalLangToIndex = []uint8{ // 775 elements
// Entry 0 - 3F
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x12, 0x12, 0x00, 0x00, 0x00, 0x00, 0x10, 0x10,
0x10, 0x10, 0x10, 0x00, 0x00, 0x05, 0x05, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Entry 40 - 7F
0x12, 0x12, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e,
0x0e, 0x0e, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x14, 0x14, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Entry 80 - BF
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0c, 0x0c,
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c,
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c,
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c,
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c,
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c,
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c,
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c,
// Entry C0 - FF
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c,
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c,
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c,
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c,
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c,
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Entry 100 - 13F
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02,
0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
// Entry 140 - 17F
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x11, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11,
0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x03,
0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Entry 180 - 1BF
0x00, 0x00, 0x00, 0x00, 0x09, 0x09, 0x09, 0x09,
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0x0a, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Entry 1C0 - 1FF
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x0f, 0x0f, 0x00, 0x00,
0x00, 0x00, 0x02, 0x0d, 0x0d, 0x02, 0x02, 0x02,
0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Entry 200 - 23F
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x04, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x13, 0x13, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Entry 240 - 27F
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02,
0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Entry 280 - 2BF
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x0b, 0x0b, 0x0b, 0x0b, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x07, 0x07, 0x02, 0x00, 0x00, 0x00, 0x00,
// Entry 2C0 - 2FF
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x06, 0x06, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Entry 300 - 33F
0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x0c,
} // Size: 799 bytes
var ordinalInclusionMasks = []uint64{ // 100 elements
// Entry 0 - 1F
0x0000002000010009, 0x00000018482000d3, 0x0000000042840195, 0x000000410a040581,
0x00000041040c0081, 0x0000009840040041, 0x0000008400045001, 0x0000003850040001,
0x0000003850060001, 0x0000003800049001, 0x0000000800052001, 0x0000000040660031,
0x0000000041840331, 0x0000000100040f01, 0x00000001001c0001, 0x0000000040040001,
0x0000000000045001, 0x0000000070040001, 0x0000000070040001, 0x0000000000049001,
0x0000000080050001, 0x0000000040200011, 0x0000000040800111, 0x0000000100000501,
0x0000000100080001, 0x0000000040000001, 0x0000000000005001, 0x0000000050000001,
0x0000000050000001, 0x0000000000009001, 0x0000000000010001, 0x0000000040200011,
// Entry 20 - 3F
0x0000000040800111, 0x0000000100000501, 0x0000000100080001, 0x0000000040000001,
0x0000000000005001, 0x0000000050000001, 0x0000000050000001, 0x0000000000009001,
0x0000000200050001, 0x0000000040200011, 0x0000000040800111, 0x0000000100000501,
0x0000000100080001, 0x0000000040000001, 0x0000000000005001, 0x0000000050000001,
0x0000000050000001, 0x0000000000009001, 0x0000000080010001, 0x0000000040200011,
0x0000000040800111, 0x0000000100000501, 0x0000000100080001, 0x0000000040000001,
0x0000000000005001, 0x0000000050000001, 0x0000000050000001, 0x0000000000009001,
0x0000000200050001, 0x0000000040200011, 0x0000000040800111, 0x0000000100000501,
// Entry 40 - 5F
0x0000000100080001, 0x0000000040000001, 0x0000000000005001, 0x0000000050000001,
0x0000000050000001, 0x0000000000009001, 0x0000000080010001, 0x0000000040200011,
0x0000000040800111, 0x0000000100000501, 0x0000000100080001, 0x0000000040000001,
0x0000000000005001, 0x0000000050000001, 0x0000000050000001, 0x0000000000009001,
0x0000000080070001, 0x0000000040200011, 0x0000000040800111, 0x0000000100000501,
0x0000000100080001, 0x0000000040000001, 0x0000000000005001, 0x0000000050000001,
0x0000000050000001, 0x0000000000009001, 0x0000000200010001, 0x0000000040200011,
0x0000000040800111, 0x0000000100000501, 0x0000000100080001, 0x0000000040000001,
// Entry 60 - 7F
0x0000000000005001, 0x0000000050000001, 0x0000000050000001, 0x0000000000009001,
} // Size: 824 bytes
// Slots used for ordinal: 40 of 0xFF rules; 16 of 0xFF indexes; 40 of 64 sets
var cardinalRules = []pluralCheck{ // 166 elements
0: {cat: 0x2, setID: 0x3},
1: {cat: 0x22, setID: 0x1},
2: {cat: 0x2, setID: 0x4},
3: {cat: 0x2, setID: 0x4},
4: {cat: 0x7, setID: 0x1},
5: {cat: 0x62, setID: 0x3},
6: {cat: 0x22, setID: 0x4},
7: {cat: 0x7, setID: 0x3},
8: {cat: 0x42, setID: 0x1},
9: {cat: 0x22, setID: 0x4},
10: {cat: 0x22, setID: 0x4},
11: {cat: 0x22, setID: 0x5},
12: {cat: 0x22, setID: 0x1},
13: {cat: 0x22, setID: 0x1},
14: {cat: 0x7, setID: 0x4},
15: {cat: 0x92, setID: 0x3},
16: {cat: 0xf, setID: 0x6},
17: {cat: 0x1f, setID: 0x7},
18: {cat: 0x82, setID: 0x3},
19: {cat: 0x92, setID: 0x3},
20: {cat: 0xf, setID: 0x6},
21: {cat: 0x62, setID: 0x3},
22: {cat: 0x4a, setID: 0x6},
23: {cat: 0x7, setID: 0x8},
24: {cat: 0x62, setID: 0x3},
25: {cat: 0x1f, setID: 0x9},
26: {cat: 0x62, setID: 0x3},
27: {cat: 0x5f, setID: 0x9},
28: {cat: 0x72, setID: 0x3},
29: {cat: 0x29, setID: 0xa},
30: {cat: 0x29, setID: 0xb},
31: {cat: 0x4f, setID: 0xb},
32: {cat: 0x61, setID: 0x2},
33: {cat: 0x2f, setID: 0x6},
34: {cat: 0x3a, setID: 0x7},
35: {cat: 0x4f, setID: 0x6},
36: {cat: 0x5f, setID: 0x7},
37: {cat: 0x62, setID: 0x2},
38: {cat: 0x4f, setID: 0x6},
39: {cat: 0x72, setID: 0x2},
40: {cat: 0x21, setID: 0x3},
41: {cat: 0x7, setID: 0x4},
42: {cat: 0x32, setID: 0x3},
43: {cat: 0x21, setID: 0x3},
44: {cat: 0x22, setID: 0x1},
45: {cat: 0x22, setID: 0x1},
46: {cat: 0x23, setID: 0x2},
47: {cat: 0x2, setID: 0x3},
48: {cat: 0x22, setID: 0x1},
49: {cat: 0x24, setID: 0xc},
50: {cat: 0x7, setID: 0x1},
51: {cat: 0x62, setID: 0x3},
52: {cat: 0x74, setID: 0x3},
53: {cat: 0x24, setID: 0x3},
54: {cat: 0x2f, setID: 0xd},
55: {cat: 0x34, setID: 0x1},
56: {cat: 0xf, setID: 0x6},
57: {cat: 0x1f, setID: 0x7},
58: {cat: 0x62, setID: 0x3},
59: {cat: 0x4f, setID: 0x6},
60: {cat: 0x5a, setID: 0x7},
61: {cat: 0xf, setID: 0xe},
62: {cat: 0x1f, setID: 0xf},
63: {cat: 0x64, setID: 0x3},
64: {cat: 0x4f, setID: 0xe},
65: {cat: 0x5c, setID: 0xf},
66: {cat: 0x22, setID: 0x10},
67: {cat: 0x23, setID: 0x11},
68: {cat: 0x24, setID: 0x12},
69: {cat: 0xf, setID: 0x1},
70: {cat: 0x62, setID: 0x3},
71: {cat: 0xf, setID: 0x2},
72: {cat: 0x63, setID: 0x3},
73: {cat: 0xf, setID: 0x13},
74: {cat: 0x64, setID: 0x3},
75: {cat: 0x74, setID: 0x3},
76: {cat: 0xf, setID: 0x1},
77: {cat: 0x62, setID: 0x3},
78: {cat: 0x4a, setID: 0x1},
79: {cat: 0xf, setID: 0x2},
80: {cat: 0x63, setID: 0x3},
81: {cat: 0x4b, setID: 0x2},
82: {cat: 0xf, setID: 0x13},
83: {cat: 0x64, setID: 0x3},
84: {cat: 0x4c, setID: 0x13},
85: {cat: 0x7, setID: 0x1},
86: {cat: 0x62, setID: 0x3},
87: {cat: 0x7, setID: 0x2},
88: {cat: 0x63, setID: 0x3},
89: {cat: 0x2f, setID: 0xa},
90: {cat: 0x37, setID: 0x14},
91: {cat: 0x65, setID: 0x3},
92: {cat: 0x7, setID: 0x1},
93: {cat: 0x62, setID: 0x3},
94: {cat: 0x7, setID: 0x15},
95: {cat: 0x64, setID: 0x3},
96: {cat: 0x75, setID: 0x3},
97: {cat: 0x7, setID: 0x1},
98: {cat: 0x62, setID: 0x3},
99: {cat: 0xf, setID: 0xe},
100: {cat: 0x1f, setID: 0xf},
101: {cat: 0x64, setID: 0x3},
102: {cat: 0xf, setID: 0x16},
103: {cat: 0x17, setID: 0x1},
104: {cat: 0x65, setID: 0x3},
105: {cat: 0xf, setID: 0x17},
106: {cat: 0x65, setID: 0x3},
107: {cat: 0xf, setID: 0xf},
108: {cat: 0x65, setID: 0x3},
109: {cat: 0x2f, setID: 0x6},
110: {cat: 0x3a, setID: 0x7},
111: {cat: 0x2f, setID: 0xe},
112: {cat: 0x3c, setID: 0xf},
113: {cat: 0x2d, setID: 0xa},
114: {cat: 0x2d, setID: 0x17},
115: {cat: 0x2d, setID: 0x18},
116: {cat: 0x2f, setID: 0x6},
117: {cat: 0x3a, setID: 0xb},
118: {cat: 0x2f, setID: 0x19},
119: {cat: 0x3c, setID: 0xb},
120: {cat: 0x55, setID: 0x3},
121: {cat: 0x22, setID: 0x1},
122: {cat: 0x24, setID: 0x3},
123: {cat: 0x2c, setID: 0xc},
124: {cat: 0x2d, setID: 0xb},
125: {cat: 0xf, setID: 0x6},
126: {cat: 0x1f, setID: 0x7},
127: {cat: 0x62, setID: 0x3},
128: {cat: 0xf, setID: 0xe},
129: {cat: 0x1f, setID: 0xf},
130: {cat: 0x64, setID: 0x3},
131: {cat: 0xf, setID: 0xa},
132: {cat: 0x65, setID: 0x3},
133: {cat: 0xf, setID: 0x17},
134: {cat: 0x65, setID: 0x3},
135: {cat: 0xf, setID: 0x18},
136: {cat: 0x65, setID: 0x3},
137: {cat: 0x2f, setID: 0x6},
138: {cat: 0x3a, setID: 0x1a},
139: {cat: 0x2f, setID: 0x1b},
140: {cat: 0x3b, setID: 0x1c},
141: {cat: 0x2f, setID: 0x1d},
142: {cat: 0x3c, setID: 0x1e},
143: {cat: 0x37, setID: 0x3},
144: {cat: 0xa5, setID: 0x0},
145: {cat: 0x22, setID: 0x1},
146: {cat: 0x23, setID: 0x2},
147: {cat: 0x24, setID: 0x1f},
148: {cat: 0x25, setID: 0x20},
149: {cat: 0xf, setID: 0x6},
150: {cat: 0x62, setID: 0x3},
151: {cat: 0xf, setID: 0x1b},
152: {cat: 0x63, setID: 0x3},
153: {cat: 0xf, setID: 0x21},
154: {cat: 0x64, setID: 0x3},
155: {cat: 0x75, setID: 0x3},
156: {cat: 0x21, setID: 0x3},
157: {cat: 0x22, setID: 0x1},
158: {cat: 0x23, setID: 0x2},
159: {cat: 0x2c, setID: 0x22},
160: {cat: 0x2d, setID: 0x5},
161: {cat: 0x21, setID: 0x3},
162: {cat: 0x22, setID: 0x1},
163: {cat: 0x23, setID: 0x2},
164: {cat: 0x24, setID: 0x23},
165: {cat: 0x25, setID: 0x24},
} // Size: 356 bytes
var cardinalIndex = []uint8{ // 36 elements
0x00, 0x00, 0x02, 0x03, 0x04, 0x06, 0x09, 0x0a,
0x0c, 0x0d, 0x10, 0x14, 0x17, 0x1d, 0x28, 0x2b,
0x2d, 0x2f, 0x32, 0x38, 0x42, 0x45, 0x4c, 0x55,
0x5c, 0x61, 0x6d, 0x74, 0x79, 0x7d, 0x89, 0x91,
0x95, 0x9c, 0xa1, 0xa6,
} // Size: 60 bytes
var cardinalLangToIndex = []uint8{ // 775 elements
// Entry 0 - 3F
0x00, 0x08, 0x08, 0x08, 0x00, 0x00, 0x06, 0x06,
0x01, 0x01, 0x21, 0x21, 0x21, 0x21, 0x21, 0x21,
0x21, 0x21, 0x21, 0x21, 0x21, 0x21, 0x21, 0x21,
0x21, 0x21, 0x21, 0x21, 0x21, 0x21, 0x21, 0x21,
0x21, 0x21, 0x21, 0x21, 0x21, 0x21, 0x21, 0x21,
0x01, 0x01, 0x08, 0x08, 0x04, 0x04, 0x08, 0x08,
0x08, 0x08, 0x08, 0x00, 0x00, 0x1a, 0x1a, 0x08,
0x08, 0x08, 0x08, 0x08, 0x08, 0x06, 0x00, 0x00,
// Entry 40 - 7F
0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x1e, 0x1e,
0x08, 0x08, 0x13, 0x13, 0x13, 0x13, 0x13, 0x04,
0x04, 0x04, 0x04, 0x04, 0x00, 0x00, 0x00, 0x08,
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
0x18, 0x18, 0x00, 0x00, 0x22, 0x22, 0x09, 0x09,
0x09, 0x00, 0x00, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x00, 0x00, 0x16, 0x16, 0x00,
0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Entry 80 - BF
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
// Entry C0 - FF
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x08,
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
// Entry 100 - 13F
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x04, 0x04,
0x08, 0x08, 0x00, 0x00, 0x01, 0x01, 0x01, 0x02,
0x02, 0x02, 0x02, 0x02, 0x04, 0x04, 0x0c, 0x0c,
0x08, 0x08, 0x08, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
// Entry 140 - 17F
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x08, 0x08, 0x04, 0x04, 0x1f, 0x1f,
0x14, 0x14, 0x04, 0x04, 0x08, 0x08, 0x08, 0x08,
0x01, 0x01, 0x06, 0x00, 0x00, 0x20, 0x20, 0x08,
0x08, 0x08, 0x08, 0x08, 0x08, 0x17, 0x17, 0x01,
0x01, 0x13, 0x13, 0x13, 0x16, 0x16, 0x08, 0x08,
0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Entry 180 - 1BF
0x00, 0x04, 0x0a, 0x0a, 0x04, 0x04, 0x04, 0x04,
0x04, 0x10, 0x17, 0x00, 0x00, 0x00, 0x08, 0x08,
0x04, 0x08, 0x08, 0x00, 0x00, 0x08, 0x08, 0x02,
0x02, 0x08, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08,
0x08, 0x08, 0x08, 0x00, 0x00, 0x00, 0x00, 0x01,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08,
0x08, 0x08, 0x00, 0x00, 0x0f, 0x0f, 0x08, 0x10,
// Entry 1C0 - 1FF
0x10, 0x08, 0x08, 0x0e, 0x0e, 0x08, 0x08, 0x08,
0x08, 0x00, 0x00, 0x06, 0x06, 0x06, 0x06, 0x06,
0x00, 0x00, 0x00, 0x00, 0x00, 0x1b, 0x1b, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x0d, 0x0d, 0x08,
0x08, 0x08, 0x00, 0x00, 0x00, 0x00, 0x06, 0x06,
0x00, 0x00, 0x08, 0x08, 0x0b, 0x0b, 0x08, 0x08,
0x08, 0x08, 0x12, 0x01, 0x01, 0x00, 0x00, 0x00,
0x00, 0x1c, 0x1c, 0x00, 0x00, 0x00, 0x00, 0x00,
// Entry 200 - 23F
0x00, 0x08, 0x10, 0x10, 0x08, 0x08, 0x08, 0x08,
0x08, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x00,
0x00, 0x08, 0x08, 0x08, 0x08, 0x08, 0x00, 0x08,
0x06, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08, 0x08,
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x06, 0x06,
0x06, 0x06, 0x06, 0x08, 0x19, 0x19, 0x0d, 0x0d,
0x08, 0x08, 0x03, 0x04, 0x03, 0x04, 0x04, 0x04,
// Entry 240 - 27F
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x00,
0x00, 0x00, 0x00, 0x08, 0x08, 0x00, 0x00, 0x12,
0x12, 0x12, 0x08, 0x08, 0x1d, 0x1d, 0x1d, 0x1d,
0x1d, 0x1d, 0x1d, 0x00, 0x00, 0x08, 0x08, 0x00,
0x00, 0x08, 0x08, 0x00, 0x00, 0x08, 0x08, 0x08,
0x10, 0x10, 0x10, 0x10, 0x08, 0x08, 0x00, 0x00,
0x00, 0x00, 0x13, 0x11, 0x11, 0x11, 0x11, 0x11,
0x05, 0x05, 0x18, 0x18, 0x15, 0x15, 0x10, 0x10,
// Entry 280 - 2BF
0x10, 0x10, 0x10, 0x10, 0x08, 0x08, 0x08, 0x08,
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x13,
0x13, 0x13, 0x13, 0x13, 0x13, 0x13, 0x13, 0x13,
0x13, 0x13, 0x08, 0x08, 0x08, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x08, 0x08,
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
0x08, 0x00, 0x00, 0x00, 0x00, 0x06, 0x06, 0x06,
0x08, 0x08, 0x08, 0x0c, 0x08, 0x00, 0x00, 0x08,
// Entry 2C0 - 2FF
0x08, 0x08, 0x08, 0x00, 0x00, 0x00, 0x00, 0x07,
0x07, 0x08, 0x08, 0x1d, 0x1d, 0x04, 0x04, 0x04,
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x00,
0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x08,
0x08, 0x08, 0x08, 0x06, 0x08, 0x08, 0x00, 0x00,
0x08, 0x08, 0x08, 0x00, 0x00, 0x04, 0x04, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Entry 300 - 33F
0x00, 0x00, 0x00, 0x01, 0x01, 0x04, 0x04,
} // Size: 799 bytes
var cardinalInclusionMasks = []uint64{ // 100 elements
// Entry 0 - 1F
0x0000000200500419, 0x0000000000512153, 0x000000000a327105, 0x0000000ca23c7101,
0x00000004a23c7201, 0x0000000482943001, 0x0000001482943201, 0x0000000502943001,
0x0000000502943001, 0x0000000522943201, 0x0000000540543401, 0x00000000454128e1,
0x000000005b02e821, 0x000000006304e821, 0x000000006304ea21, 0x0000000042842821,
0x0000000042842a21, 0x0000000042842821, 0x0000000042842821, 0x0000000062842a21,
0x0000000200400421, 0x0000000000400061, 0x000000000a004021, 0x0000000022004021,
0x0000000022004221, 0x0000000002800021, 0x0000000002800221, 0x0000000002800021,
0x0000000002800021, 0x0000000022800221, 0x0000000000400421, 0x0000000000400061,
// Entry 20 - 3F
0x000000000a004021, 0x0000000022004021, 0x0000000022004221, 0x0000000002800021,
0x0000000002800221, 0x0000000002800021, 0x0000000002800021, 0x0000000022800221,
0x0000000200400421, 0x0000000000400061, 0x000000000a004021, 0x0000000022004021,
0x0000000022004221, 0x0000000002800021, 0x0000000002800221, 0x0000000002800021,
0x0000000002800021, 0x0000000022800221, 0x0000000000400421, 0x0000000000400061,
0x000000000a004021, 0x0000000022004021, 0x0000000022004221, 0x0000000002800021,
0x0000000002800221, 0x0000000002800021, 0x0000000002800021, 0x0000000022800221,
0x0000000200400421, 0x0000000000400061, 0x000000000a004021, 0x0000000022004021,
// Entry 40 - 5F
0x0000000022004221, 0x0000000002800021, 0x0000000002800221, 0x0000000002800021,
0x0000000002800021, 0x0000000022800221, 0x0000000040400421, 0x0000000044400061,
0x000000005a004021, 0x0000000062004021, 0x0000000062004221, 0x0000000042800021,
0x0000000042800221, 0x0000000042800021, 0x0000000042800021, 0x0000000062800221,
0x0000000200400421, 0x0000000000400061, 0x000000000a004021, 0x0000000022004021,
0x0000000022004221, 0x0000000002800021, 0x0000000002800221, 0x0000000002800021,
0x0000000002800021, 0x0000000022800221, 0x0000000040400421, 0x0000000044400061,
0x000000005a004021, 0x0000000062004021, 0x0000000062004221, 0x0000000042800021,
// Entry 60 - 7F
0x0000000042800221, 0x0000000042800021, 0x0000000042800021, 0x0000000062800221,
} // Size: 824 bytes
// Slots used for cardinal: A6 of 0xFF rules; 24 of 0xFF indexes; 37 of 64 sets
// Total table size 3860 bytes (3KiB); checksum: AAFBF21

417
vendor/golang.org/x/text/internal/catmsg/catmsg.go generated vendored Normal file
View File

@ -0,0 +1,417 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package catmsg contains support types for package x/text/message/catalog.
//
// This package contains the low-level implementations of Message used by the
// catalog package and provides primitives for other packages to implement their
// own. For instance, the plural package provides functionality for selecting
// translation strings based on the plural category of substitution arguments.
//
// # Encoding and Decoding
//
// Catalogs store Messages encoded as a single string. Compiling a message into
// a string both results in compacter representation and speeds up evaluation.
//
// A Message must implement a Compile method to convert its arbitrary
// representation to a string. The Compile method takes an Encoder which
// facilitates serializing the message. Encoders also provide more context of
// the messages's creation (such as for which language the message is intended),
// which may not be known at the time of the creation of the message.
//
// Each message type must also have an accompanying decoder registered to decode
// the message. This decoder takes a Decoder argument which provides the
// counterparts for the decoding.
//
// # Renderers
//
// A Decoder must be initialized with a Renderer implementation. These
// implementations must be provided by packages that use Catalogs, typically
// formatting packages such as x/text/message. A typical user will not need to
// worry about this type; it is only relevant to packages that do string
// formatting and want to use the catalog package to handle localized strings.
//
// A package that uses catalogs for selecting strings receives selection results
// as sequence of substrings passed to the Renderer. The following snippet shows
// how to express the above example using the message package.
//
// message.Set(language.English, "You are %d minute(s) late.",
// catalog.Var("minutes", plural.Select(1, "one", "minute")),
// catalog.String("You are %[1]d ${minutes} late."))
//
// p := message.NewPrinter(language.English)
// p.Printf("You are %d minute(s) late.", 5) // always 5 minutes late.
//
// To evaluate the Printf, package message wraps the arguments in a Renderer
// that is passed to the catalog for message decoding. The call sequence that
// results from evaluating the above message, assuming the person is rather
// tardy, is:
//
// Render("You are %[1]d ")
// Arg(1)
// Render("minutes")
// Render(" late.")
//
// The calls to Arg is caused by the plural.Select execution, which evaluates
// the argument to determine whether the singular or plural message form should
// be selected. The calls to Render reports the partial results to the message
// package for further evaluation.
package catmsg
import (
"errors"
"fmt"
"strconv"
"strings"
"sync"
"golang.org/x/text/language"
)
// A Handle refers to a registered message type.
type Handle int
// A Handler decodes and evaluates data compiled by a Message and sends the
// result to the Decoder. The output may depend on the value of the substitution
// arguments, accessible by the Decoder's Arg method. The Handler returns false
// if there is no translation for the given substitution arguments.
type Handler func(d *Decoder) bool
// Register records the existence of a message type and returns a Handle that
// can be used in the Encoder's EncodeMessageType method to create such
// messages. The prefix of the name should be the package path followed by
// an optional disambiguating string.
// Register will panic if a handle for the same name was already registered.
func Register(name string, handler Handler) Handle {
mutex.Lock()
defer mutex.Unlock()
if _, ok := names[name]; ok {
panic(fmt.Errorf("catmsg: handler for %q already exists", name))
}
h := Handle(len(handlers))
names[name] = h
handlers = append(handlers, handler)
return h
}
// These handlers require fixed positions in the handlers slice.
const (
msgVars Handle = iota
msgFirst
msgRaw
msgString
msgAffix
// Leave some arbitrary room for future expansion: 20 should suffice.
numInternal = 20
)
const prefix = "golang.org/x/text/internal/catmsg."
var (
// TODO: find a more stable way to link handles to message types.
mutex sync.Mutex
names = map[string]Handle{
prefix + "Vars": msgVars,
prefix + "First": msgFirst,
prefix + "Raw": msgRaw,
prefix + "String": msgString,
prefix + "Affix": msgAffix,
}
handlers = make([]Handler, numInternal)
)
func init() {
// This handler is a message type wrapper that initializes a decoder
// with a variable block. This message type, if present, is always at the
// start of an encoded message.
handlers[msgVars] = func(d *Decoder) bool {
blockSize := int(d.DecodeUint())
d.vars = d.data[:blockSize]
d.data = d.data[blockSize:]
return d.executeMessage()
}
// First takes the first message in a sequence that results in a match for
// the given substitution arguments.
handlers[msgFirst] = func(d *Decoder) bool {
for !d.Done() {
if d.ExecuteMessage() {
return true
}
}
return false
}
handlers[msgRaw] = func(d *Decoder) bool {
d.Render(d.data)
return true
}
// A String message alternates between a string constant and a variable
// substitution.
handlers[msgString] = func(d *Decoder) bool {
for !d.Done() {
if str := d.DecodeString(); str != "" {
d.Render(str)
}
if d.Done() {
break
}
d.ExecuteSubstitution()
}
return true
}
handlers[msgAffix] = func(d *Decoder) bool {
// TODO: use an alternative method for common cases.
prefix := d.DecodeString()
suffix := d.DecodeString()
if prefix != "" {
d.Render(prefix)
}
ret := d.ExecuteMessage()
if suffix != "" {
d.Render(suffix)
}
return ret
}
}
var (
// ErrIncomplete indicates a compiled message does not define translations
// for all possible argument values. If this message is returned, evaluating
// a message may result in the ErrNoMatch error.
ErrIncomplete = errors.New("catmsg: incomplete message; may not give result for all inputs")
// ErrNoMatch indicates no translation message matched the given input
// parameters when evaluating a message.
ErrNoMatch = errors.New("catmsg: no translation for inputs")
)
// A Message holds a collection of translations for the same phrase that may
// vary based on the values of substitution arguments.
type Message interface {
// Compile encodes the format string(s) of the message as a string for later
// evaluation.
//
// The first call Compile makes on the encoder must be EncodeMessageType.
// The handle passed to this call may either be a handle returned by
// Register to encode a single custom message, or HandleFirst followed by
// a sequence of calls to EncodeMessage.
//
// Compile must return ErrIncomplete if it is possible for evaluation to
// not match any translation for a given set of formatting parameters.
// For example, selecting a translation based on plural form may not yield
// a match if the form "Other" is not one of the selectors.
//
// Compile may return any other application-specific error. For backwards
// compatibility with package like fmt, which often do not do sanity
// checking of format strings ahead of time, Compile should still make an
// effort to have some sensible fallback in case of an error.
Compile(e *Encoder) error
}
// Compile converts a Message to a data string that can be stored in a Catalog.
// The resulting string can subsequently be decoded by passing to the Execute
// method of a Decoder.
func Compile(tag language.Tag, macros Dictionary, m Message) (data string, err error) {
// TODO: pass macros so they can be used for validation.
v := &Encoder{inBody: true} // encoder for variables
v.root = v
e := &Encoder{root: v, parent: v, tag: tag} // encoder for messages
err = m.Compile(e)
// This package serves te message package, which in turn is meant to be a
// drop-in replacement for fmt. With the fmt package, format strings are
// evaluated lazily and errors are handled by substituting strings in the
// result, rather then returning an error. Dealing with multiple languages
// makes it more important to check errors ahead of time. We chose to be
// consistent and compatible and allow graceful degradation in case of
// errors.
buf := e.buf[stripPrefix(e.buf):]
if len(v.buf) > 0 {
// Prepend variable block.
b := make([]byte, 1+maxVarintBytes+len(v.buf)+len(buf))
b[0] = byte(msgVars)
b = b[:1+encodeUint(b[1:], uint64(len(v.buf)))]
b = append(b, v.buf...)
b = append(b, buf...)
buf = b
}
if err == nil {
err = v.err
}
return string(buf), err
}
// FirstOf is a message type that prints the first message in the sequence that
// resolves to a match for the given substitution arguments.
type FirstOf []Message
// Compile implements Message.
func (s FirstOf) Compile(e *Encoder) error {
e.EncodeMessageType(msgFirst)
err := ErrIncomplete
for i, m := range s {
if err == nil {
return fmt.Errorf("catalog: message argument %d is complete and blocks subsequent messages", i-1)
}
err = e.EncodeMessage(m)
}
return err
}
// Var defines a message that can be substituted for a placeholder of the same
// name. If an expression does not result in a string after evaluation, Name is
// used as the substitution. For example:
//
// Var{
// Name: "minutes",
// Message: plural.Select(1, "one", "minute"),
// }
//
// will resolve to minute for singular and minutes for plural forms.
type Var struct {
Name string
Message Message
}
var errIsVar = errors.New("catmsg: variable used as message")
// Compile implements Message.
//
// Note that this method merely registers a variable; it does not create an
// encoded message.
func (v *Var) Compile(e *Encoder) error {
if err := e.addVar(v.Name, v.Message); err != nil {
return err
}
// Using a Var by itself is an error. If it is in a sequence followed by
// other messages referring to it, this error will be ignored.
return errIsVar
}
// Raw is a message consisting of a single format string that is passed as is
// to the Renderer.
//
// Note that a Renderer may still do its own variable substitution.
type Raw string
// Compile implements Message.
func (r Raw) Compile(e *Encoder) (err error) {
e.EncodeMessageType(msgRaw)
// Special case: raw strings don't have a size encoding and so don't use
// EncodeString.
e.buf = append(e.buf, r...)
return nil
}
// String is a message consisting of a single format string which contains
// placeholders that may be substituted with variables.
//
// Variable substitutions are marked with placeholders and a variable name of
// the form ${name}. Any other substitutions such as Go templates or
// printf-style substitutions are left to be done by the Renderer.
//
// When evaluation a string interpolation, a Renderer will receive separate
// calls for each placeholder and interstitial string. For example, for the
// message: "%[1]v ${invites} %[2]v to ${their} party." The sequence of calls
// is:
//
// d.Render("%[1]v ")
// d.Arg(1)
// d.Render(resultOfInvites)
// d.Render(" %[2]v to ")
// d.Arg(2)
// d.Render(resultOfTheir)
// d.Render(" party.")
//
// where the messages for "invites" and "their" both use a plural.Select
// referring to the first argument.
//
// Strings may also invoke macros. Macros are essentially variables that can be
// reused. Macros may, for instance, be used to make selections between
// different conjugations of a verb. See the catalog package description for an
// overview of macros.
type String string
// Compile implements Message. It parses the placeholder formats and returns
// any error.
func (s String) Compile(e *Encoder) (err error) {
msg := string(s)
const subStart = "${"
hasHeader := false
p := 0
b := []byte{}
for {
i := strings.Index(msg[p:], subStart)
if i == -1 {
break
}
b = append(b, msg[p:p+i]...)
p += i + len(subStart)
if i = strings.IndexByte(msg[p:], '}'); i == -1 {
b = append(b, "$!(MISSINGBRACE)"...)
err = fmt.Errorf("catmsg: missing '}'")
p = len(msg)
break
}
name := strings.TrimSpace(msg[p : p+i])
if q := strings.IndexByte(name, '('); q == -1 {
if !hasHeader {
hasHeader = true
e.EncodeMessageType(msgString)
}
e.EncodeString(string(b))
e.EncodeSubstitution(name)
b = b[:0]
} else if j := strings.IndexByte(name[q:], ')'); j == -1 {
// TODO: what should the error be?
b = append(b, "$!(MISSINGPAREN)"...)
err = fmt.Errorf("catmsg: missing ')'")
} else if x, sErr := strconv.ParseUint(strings.TrimSpace(name[q+1:q+j]), 10, 32); sErr != nil {
// TODO: handle more than one argument
b = append(b, "$!(BADNUM)"...)
err = fmt.Errorf("catmsg: invalid number %q", strings.TrimSpace(name[q+1:q+j]))
} else {
if !hasHeader {
hasHeader = true
e.EncodeMessageType(msgString)
}
e.EncodeString(string(b))
e.EncodeSubstitution(name[:q], int(x))
b = b[:0]
}
p += i + 1
}
b = append(b, msg[p:]...)
if !hasHeader {
// Simplify string to a raw string.
Raw(string(b)).Compile(e)
} else if len(b) > 0 {
e.EncodeString(string(b))
}
return err
}
// Affix is a message that adds a prefix and suffix to another message.
// This is mostly used add back whitespace to a translation that was stripped
// before sending it out.
type Affix struct {
Message Message
Prefix string
Suffix string
}
// Compile implements Message.
func (a Affix) Compile(e *Encoder) (err error) {
// TODO: consider adding a special message type that just adds a single
// return. This is probably common enough to handle the majority of cases.
// Get some stats first, though.
e.EncodeMessageType(msgAffix)
e.EncodeString(a.Prefix)
e.EncodeString(a.Suffix)
e.EncodeMessage(a.Message)
return nil
}

407
vendor/golang.org/x/text/internal/catmsg/codec.go generated vendored Normal file
View File

@ -0,0 +1,407 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package catmsg
import (
"errors"
"fmt"
"golang.org/x/text/language"
)
// A Renderer renders a Message.
type Renderer interface {
// Render renders the given string. The given string may be interpreted as a
// format string, such as the one used by the fmt package or a template.
Render(s string)
// Arg returns the i-th argument passed to format a message. This method
// should return nil if there is no such argument. Messages need access to
// arguments to allow selecting a message based on linguistic features of
// those arguments.
Arg(i int) interface{}
}
// A Dictionary specifies a source of messages, including variables or macros.
type Dictionary interface {
// Lookup returns the message for the given key. It returns false for ok if
// such a message could not be found.
Lookup(key string) (data string, ok bool)
// TODO: consider returning an interface, instead of a string. This will
// allow implementations to do their own message type decoding.
}
// An Encoder serializes a Message to a string.
type Encoder struct {
// The root encoder is used for storing encoded variables.
root *Encoder
// The parent encoder provides the surrounding scopes for resolving variable
// names.
parent *Encoder
tag language.Tag
// buf holds the encoded message so far. After a message completes encoding,
// the contents of buf, prefixed by the encoded length, are flushed to the
// parent buffer.
buf []byte
// vars is the lookup table of variables in the current scope.
vars []keyVal
err error
inBody bool // if false next call must be EncodeMessageType
}
type keyVal struct {
key string
offset int
}
// Language reports the language for which the encoded message will be stored
// in the Catalog.
func (e *Encoder) Language() language.Tag { return e.tag }
func (e *Encoder) setError(err error) {
if e.root.err == nil {
e.root.err = err
}
}
// EncodeUint encodes x.
func (e *Encoder) EncodeUint(x uint64) {
e.checkInBody()
var buf [maxVarintBytes]byte
n := encodeUint(buf[:], x)
e.buf = append(e.buf, buf[:n]...)
}
// EncodeString encodes s.
func (e *Encoder) EncodeString(s string) {
e.checkInBody()
e.EncodeUint(uint64(len(s)))
e.buf = append(e.buf, s...)
}
// EncodeMessageType marks the current message to be of type h.
//
// It must be the first call of a Message's Compile method.
func (e *Encoder) EncodeMessageType(h Handle) {
if e.inBody {
panic("catmsg: EncodeMessageType not the first method called")
}
e.inBody = true
e.EncodeUint(uint64(h))
}
// EncodeMessage serializes the given message inline at the current position.
func (e *Encoder) EncodeMessage(m Message) error {
e = &Encoder{root: e.root, parent: e, tag: e.tag}
err := m.Compile(e)
if _, ok := m.(*Var); !ok {
e.flushTo(e.parent)
}
return err
}
func (e *Encoder) checkInBody() {
if !e.inBody {
panic("catmsg: expected prior call to EncodeMessageType")
}
}
// stripPrefix indicates the number of prefix bytes that must be stripped to
// turn a single-element sequence into a message that is just this single member
// without its size prefix. If the message can be stripped, b[1:n] contains the
// size prefix.
func stripPrefix(b []byte) (n int) {
if len(b) > 0 && Handle(b[0]) == msgFirst {
x, n, _ := decodeUint(b[1:])
if 1+n+int(x) == len(b) {
return 1 + n
}
}
return 0
}
func (e *Encoder) flushTo(dst *Encoder) {
data := e.buf
p := stripPrefix(data)
if p > 0 {
data = data[1:]
} else {
// Prefix the size.
dst.EncodeUint(uint64(len(data)))
}
dst.buf = append(dst.buf, data...)
}
func (e *Encoder) addVar(key string, m Message) error {
for _, v := range e.parent.vars {
if v.key == key {
err := fmt.Errorf("catmsg: duplicate variable %q", key)
e.setError(err)
return err
}
}
scope := e.parent
// If a variable message is Incomplete, and does not evaluate to a message
// during execution, we fall back to the variable name. We encode this by
// appending the variable name if the message reports it's incomplete.
err := m.Compile(e)
if err != ErrIncomplete {
e.setError(err)
}
switch {
case len(e.buf) == 1 && Handle(e.buf[0]) == msgFirst: // empty sequence
e.buf = e.buf[:0]
e.inBody = false
fallthrough
case len(e.buf) == 0:
// Empty message.
if err := String(key).Compile(e); err != nil {
e.setError(err)
}
case err == ErrIncomplete:
if Handle(e.buf[0]) != msgFirst {
seq := &Encoder{root: e.root, parent: e}
seq.EncodeMessageType(msgFirst)
e.flushTo(seq)
e = seq
}
// e contains a sequence; append the fallback string.
e.EncodeMessage(String(key))
}
// Flush result to variable heap.
offset := len(e.root.buf)
e.flushTo(e.root)
e.buf = e.buf[:0]
// Record variable offset in current scope.
scope.vars = append(scope.vars, keyVal{key: key, offset: offset})
return err
}
const (
substituteVar = iota
substituteMacro
substituteError
)
// EncodeSubstitution inserts a resolved reference to a variable or macro.
//
// This call must be matched with a call to ExecuteSubstitution at decoding
// time.
func (e *Encoder) EncodeSubstitution(name string, arguments ...int) {
if arity := len(arguments); arity > 0 {
// TODO: also resolve macros.
e.EncodeUint(substituteMacro)
e.EncodeString(name)
for _, a := range arguments {
e.EncodeUint(uint64(a))
}
return
}
for scope := e; scope != nil; scope = scope.parent {
for _, v := range scope.vars {
if v.key != name {
continue
}
e.EncodeUint(substituteVar) // TODO: support arity > 0
e.EncodeUint(uint64(v.offset))
return
}
}
// TODO: refer to dictionary-wide scoped variables.
e.EncodeUint(substituteError)
e.EncodeString(name)
e.setError(fmt.Errorf("catmsg: unknown var %q", name))
}
// A Decoder deserializes and evaluates messages that are encoded by an encoder.
type Decoder struct {
tag language.Tag
dst Renderer
macros Dictionary
err error
vars string
data string
macroArg int // TODO: allow more than one argument
}
// NewDecoder returns a new Decoder.
//
// Decoders are designed to be reused for multiple invocations of Execute.
// Only one goroutine may call Execute concurrently.
func NewDecoder(tag language.Tag, r Renderer, macros Dictionary) *Decoder {
return &Decoder{
tag: tag,
dst: r,
macros: macros,
}
}
func (d *Decoder) setError(err error) {
if d.err == nil {
d.err = err
}
}
// Language returns the language in which the message is being rendered.
//
// The destination language may be a child language of the language used for
// encoding. For instance, a decoding language of "pt-PT"" is consistent with an
// encoding language of "pt".
func (d *Decoder) Language() language.Tag { return d.tag }
// Done reports whether there are more bytes to process in this message.
func (d *Decoder) Done() bool { return len(d.data) == 0 }
// Render implements Renderer.
func (d *Decoder) Render(s string) { d.dst.Render(s) }
// Arg implements Renderer.
//
// During evaluation of macros, the argument positions may be mapped to
// arguments that differ from the original call.
func (d *Decoder) Arg(i int) interface{} {
if d.macroArg != 0 {
if i != 1 {
panic("catmsg: only macros with single argument supported")
}
i = d.macroArg
}
return d.dst.Arg(i)
}
// DecodeUint decodes a number that was encoded with EncodeUint and advances the
// position.
func (d *Decoder) DecodeUint() uint64 {
x, n, err := decodeUintString(d.data)
d.data = d.data[n:]
if err != nil {
d.setError(err)
}
return x
}
// DecodeString decodes a string that was encoded with EncodeString and advances
// the position.
func (d *Decoder) DecodeString() string {
size := d.DecodeUint()
s := d.data[:size]
d.data = d.data[size:]
return s
}
// SkipMessage skips the message at the current location and advances the
// position.
func (d *Decoder) SkipMessage() {
n := int(d.DecodeUint())
d.data = d.data[n:]
}
// Execute decodes and evaluates msg.
//
// Only one goroutine may call execute.
func (d *Decoder) Execute(msg string) error {
d.err = nil
if !d.execute(msg) {
return ErrNoMatch
}
return d.err
}
func (d *Decoder) execute(msg string) bool {
saved := d.data
d.data = msg
ok := d.executeMessage()
d.data = saved
return ok
}
// executeMessageFromData is like execute, but also decodes a leading message
// size and clips the given string accordingly.
//
// It reports the number of bytes consumed and whether a message was selected.
func (d *Decoder) executeMessageFromData(s string) (n int, ok bool) {
saved := d.data
d.data = s
size := int(d.DecodeUint())
n = len(s) - len(d.data)
// Sanitize the setting. This allows skipping a size argument for
// RawString and method Done.
d.data = d.data[:size]
ok = d.executeMessage()
n += size - len(d.data)
d.data = saved
return n, ok
}
var errUnknownHandler = errors.New("catmsg: string contains unsupported handler")
// executeMessage reads the handle id, initializes the decoder and executes the
// message. It is assumed that all of d.data[d.p:] is the single message.
func (d *Decoder) executeMessage() bool {
if d.Done() {
// We interpret no data as a valid empty message.
return true
}
handle := d.DecodeUint()
var fn Handler
mutex.Lock()
if int(handle) < len(handlers) {
fn = handlers[handle]
}
mutex.Unlock()
if fn == nil {
d.setError(errUnknownHandler)
d.execute(fmt.Sprintf("\x02$!(UNKNOWNMSGHANDLER=%#x)", handle))
return true
}
return fn(d)
}
// ExecuteMessage decodes and executes the message at the current position.
func (d *Decoder) ExecuteMessage() bool {
n, ok := d.executeMessageFromData(d.data)
d.data = d.data[n:]
return ok
}
// ExecuteSubstitution executes the message corresponding to the substitution
// as encoded by EncodeSubstitution.
func (d *Decoder) ExecuteSubstitution() {
switch x := d.DecodeUint(); x {
case substituteVar:
offset := d.DecodeUint()
d.executeMessageFromData(d.vars[offset:])
case substituteMacro:
name := d.DecodeString()
data, ok := d.macros.Lookup(name)
old := d.macroArg
// TODO: support macros of arity other than 1.
d.macroArg = int(d.DecodeUint())
switch {
case !ok:
// TODO: detect this at creation time.
d.setError(fmt.Errorf("catmsg: undefined macro %q", name))
fallthrough
case !d.execute(data):
d.dst.Render(name) // fall back to macro name.
}
d.macroArg = old
case substituteError:
d.dst.Render(d.DecodeString())
default:
panic("catmsg: unreachable")
}
}

62
vendor/golang.org/x/text/internal/catmsg/varint.go generated vendored Normal file
View File

@ -0,0 +1,62 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package catmsg
// This file implements varint encoding analogous to the one in encoding/binary.
// We need a string version of this function, so we add that here and then add
// the rest for consistency.
import "errors"
var (
errIllegalVarint = errors.New("catmsg: illegal varint")
errVarintTooLarge = errors.New("catmsg: varint too large for uint64")
)
const maxVarintBytes = 10 // maximum length of a varint
// encodeUint encodes x as a variable-sized integer into buf and returns the
// number of bytes written. buf must be at least maxVarintBytes long
func encodeUint(buf []byte, x uint64) (n int) {
for ; x > 127; n++ {
buf[n] = 0x80 | uint8(x&0x7F)
x >>= 7
}
buf[n] = uint8(x)
n++
return n
}
func decodeUintString(s string) (x uint64, size int, err error) {
i := 0
for shift := uint(0); shift < 64; shift += 7 {
if i >= len(s) {
return 0, i, errIllegalVarint
}
b := uint64(s[i])
i++
x |= (b & 0x7F) << shift
if b&0x80 == 0 {
return x, i, nil
}
}
return 0, i, errVarintTooLarge
}
func decodeUint(b []byte) (x uint64, size int, err error) {
i := 0
for shift := uint(0); shift < 64; shift += 7 {
if i >= len(b) {
return 0, i, errIllegalVarint
}
c := uint64(b[i])
i++
x |= (c & 0x7F) << shift
if c&0x80 == 0 {
return x, i, nil
}
}
return 0, i, errVarintTooLarge
}

41
vendor/golang.org/x/text/internal/format/format.go generated vendored Normal file
View File

@ -0,0 +1,41 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package format contains types for defining language-specific formatting of
// values.
//
// This package is internal now, but will eventually be exposed after the API
// settles.
package format // import "golang.org/x/text/internal/format"
import (
"fmt"
"golang.org/x/text/language"
)
// State represents the printer state passed to custom formatters. It provides
// access to the fmt.State interface and the sentence and language-related
// context.
type State interface {
fmt.State
// Language reports the requested language in which to render a message.
Language() language.Tag
// TODO: consider this and removing rune from the Format method in the
// Formatter interface.
//
// Verb returns the format variant to render, analogous to the types used
// in fmt. Use 'v' for the default or only variant.
// Verb() rune
// TODO: more info:
// - sentence context such as linguistic features passed by the translator.
}
// Formatter is analogous to fmt.Formatter.
type Formatter interface {
Format(state State, verb rune)
}

358
vendor/golang.org/x/text/internal/format/parser.go generated vendored Normal file
View File

@ -0,0 +1,358 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package format
import (
"reflect"
"unicode/utf8"
)
// A Parser parses a format string. The result from the parse are set in the
// struct fields.
type Parser struct {
Verb rune
WidthPresent bool
PrecPresent bool
Minus bool
Plus bool
Sharp bool
Space bool
Zero bool
// For the formats %+v %#v, we set the plusV/sharpV flags
// and clear the plus/sharp flags since %+v and %#v are in effect
// different, flagless formats set at the top level.
PlusV bool
SharpV bool
HasIndex bool
Width int
Prec int // precision
// retain arguments across calls.
Args []interface{}
// retain current argument number across calls
ArgNum int
// reordered records whether the format string used argument reordering.
Reordered bool
// goodArgNum records whether the most recent reordering directive was valid.
goodArgNum bool
// position info
format string
startPos int
endPos int
Status Status
}
// Reset initializes a parser to scan format strings for the given args.
func (p *Parser) Reset(args []interface{}) {
p.Args = args
p.ArgNum = 0
p.startPos = 0
p.Reordered = false
}
// Text returns the part of the format string that was parsed by the last call
// to Scan. It returns the original substitution clause if the current scan
// parsed a substitution.
func (p *Parser) Text() string { return p.format[p.startPos:p.endPos] }
// SetFormat sets a new format string to parse. It does not reset the argument
// count.
func (p *Parser) SetFormat(format string) {
p.format = format
p.startPos = 0
p.endPos = 0
}
// Status indicates the result type of a call to Scan.
type Status int
const (
StatusText Status = iota
StatusSubstitution
StatusBadWidthSubstitution
StatusBadPrecSubstitution
StatusNoVerb
StatusBadArgNum
StatusMissingArg
)
// ClearFlags reset the parser to default behavior.
func (p *Parser) ClearFlags() {
p.WidthPresent = false
p.PrecPresent = false
p.Minus = false
p.Plus = false
p.Sharp = false
p.Space = false
p.Zero = false
p.PlusV = false
p.SharpV = false
p.HasIndex = false
}
// Scan scans the next part of the format string and sets the status to
// indicate whether it scanned a string literal, substitution or error.
func (p *Parser) Scan() bool {
p.Status = StatusText
format := p.format
end := len(format)
if p.endPos >= end {
return false
}
afterIndex := false // previous item in format was an index like [3].
p.startPos = p.endPos
p.goodArgNum = true
i := p.startPos
for i < end && format[i] != '%' {
i++
}
if i > p.startPos {
p.endPos = i
return true
}
// Process one verb
i++
p.Status = StatusSubstitution
// Do we have flags?
p.ClearFlags()
simpleFormat:
for ; i < end; i++ {
c := p.format[i]
switch c {
case '#':
p.Sharp = true
case '0':
p.Zero = !p.Minus // Only allow zero padding to the left.
case '+':
p.Plus = true
case '-':
p.Minus = true
p.Zero = false // Do not pad with zeros to the right.
case ' ':
p.Space = true
default:
// Fast path for common case of ascii lower case simple verbs
// without precision or width or argument indices.
if 'a' <= c && c <= 'z' && p.ArgNum < len(p.Args) {
if c == 'v' {
// Go syntax
p.SharpV = p.Sharp
p.Sharp = false
// Struct-field syntax
p.PlusV = p.Plus
p.Plus = false
}
p.Verb = rune(c)
p.ArgNum++
p.endPos = i + 1
return true
}
// Format is more complex than simple flags and a verb or is malformed.
break simpleFormat
}
}
// Do we have an explicit argument index?
i, afterIndex = p.updateArgNumber(format, i)
// Do we have width?
if i < end && format[i] == '*' {
i++
p.Width, p.WidthPresent = p.intFromArg()
if !p.WidthPresent {
p.Status = StatusBadWidthSubstitution
}
// We have a negative width, so take its value and ensure
// that the minus flag is set
if p.Width < 0 {
p.Width = -p.Width
p.Minus = true
p.Zero = false // Do not pad with zeros to the right.
}
afterIndex = false
} else {
p.Width, p.WidthPresent, i = parsenum(format, i, end)
if afterIndex && p.WidthPresent { // "%[3]2d"
p.goodArgNum = false
}
}
// Do we have precision?
if i+1 < end && format[i] == '.' {
i++
if afterIndex { // "%[3].2d"
p.goodArgNum = false
}
i, afterIndex = p.updateArgNumber(format, i)
if i < end && format[i] == '*' {
i++
p.Prec, p.PrecPresent = p.intFromArg()
// Negative precision arguments don't make sense
if p.Prec < 0 {
p.Prec = 0
p.PrecPresent = false
}
if !p.PrecPresent {
p.Status = StatusBadPrecSubstitution
}
afterIndex = false
} else {
p.Prec, p.PrecPresent, i = parsenum(format, i, end)
if !p.PrecPresent {
p.Prec = 0
p.PrecPresent = true
}
}
}
if !afterIndex {
i, afterIndex = p.updateArgNumber(format, i)
}
p.HasIndex = afterIndex
if i >= end {
p.endPos = i
p.Status = StatusNoVerb
return true
}
verb, w := utf8.DecodeRuneInString(format[i:])
p.endPos = i + w
p.Verb = verb
switch {
case verb == '%': // Percent does not absorb operands and ignores f.wid and f.prec.
p.startPos = p.endPos - 1
p.Status = StatusText
case !p.goodArgNum:
p.Status = StatusBadArgNum
case p.ArgNum >= len(p.Args): // No argument left over to print for the current verb.
p.Status = StatusMissingArg
p.ArgNum++
case verb == 'v':
// Go syntax
p.SharpV = p.Sharp
p.Sharp = false
// Struct-field syntax
p.PlusV = p.Plus
p.Plus = false
fallthrough
default:
p.ArgNum++
}
return true
}
// intFromArg gets the ArgNumth element of Args. On return, isInt reports
// whether the argument has integer type.
func (p *Parser) intFromArg() (num int, isInt bool) {
if p.ArgNum < len(p.Args) {
arg := p.Args[p.ArgNum]
num, isInt = arg.(int) // Almost always OK.
if !isInt {
// Work harder.
switch v := reflect.ValueOf(arg); v.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
n := v.Int()
if int64(int(n)) == n {
num = int(n)
isInt = true
}
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
n := v.Uint()
if int64(n) >= 0 && uint64(int(n)) == n {
num = int(n)
isInt = true
}
default:
// Already 0, false.
}
}
p.ArgNum++
if tooLarge(num) {
num = 0
isInt = false
}
}
return
}
// parseArgNumber returns the value of the bracketed number, minus 1
// (explicit argument numbers are one-indexed but we want zero-indexed).
// The opening bracket is known to be present at format[0].
// The returned values are the index, the number of bytes to consume
// up to the closing paren, if present, and whether the number parsed
// ok. The bytes to consume will be 1 if no closing paren is present.
func parseArgNumber(format string) (index int, wid int, ok bool) {
// There must be at least 3 bytes: [n].
if len(format) < 3 {
return 0, 1, false
}
// Find closing bracket.
for i := 1; i < len(format); i++ {
if format[i] == ']' {
width, ok, newi := parsenum(format, 1, i)
if !ok || newi != i {
return 0, i + 1, false
}
return width - 1, i + 1, true // arg numbers are one-indexed and skip paren.
}
}
return 0, 1, false
}
// updateArgNumber returns the next argument to evaluate, which is either the value of the passed-in
// argNum or the value of the bracketed integer that begins format[i:]. It also returns
// the new value of i, that is, the index of the next byte of the format to process.
func (p *Parser) updateArgNumber(format string, i int) (newi int, found bool) {
if len(format) <= i || format[i] != '[' {
return i, false
}
p.Reordered = true
index, wid, ok := parseArgNumber(format[i:])
if ok && 0 <= index && index < len(p.Args) {
p.ArgNum = index
return i + wid, true
}
p.goodArgNum = false
return i + wid, ok
}
// tooLarge reports whether the magnitude of the integer is
// too large to be used as a formatting width or precision.
func tooLarge(x int) bool {
const max int = 1e6
return x > max || x < -max
}
// parsenum converts ASCII to integer. num is 0 (and isnum is false) if no number present.
func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
if start >= end {
return 0, false, end
}
for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
if tooLarge(num) {
return 0, false, end // Overflow; crazy long number most likely.
}
num = num*10 + int(s[newi]-'0')
isnum = true
}
return
}

49
vendor/golang.org/x/text/internal/internal.go generated vendored Normal file
View File

@ -0,0 +1,49 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package internal contains non-exported functionality that are used by
// packages in the text repository.
package internal // import "golang.org/x/text/internal"
import (
"sort"
"golang.org/x/text/language"
)
// SortTags sorts tags in place.
func SortTags(tags []language.Tag) {
sort.Sort(sorter(tags))
}
type sorter []language.Tag
func (s sorter) Len() int {
return len(s)
}
func (s sorter) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s sorter) Less(i, j int) bool {
return s[i].String() < s[j].String()
}
// UniqueTags sorts and filters duplicate tags in place and returns a slice with
// only unique tags.
func UniqueTags(tags []language.Tag) []language.Tag {
if len(tags) <= 1 {
return tags
}
SortTags(tags)
k := 0
for i := 1; i < len(tags); i++ {
if tags[k].String() < tags[i].String() {
k++
tags[k] = tags[i]
}
}
return tags[:k+1]
}

16
vendor/golang.org/x/text/internal/language/common.go generated vendored Normal file
View File

@ -0,0 +1,16 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
package language
// This file contains code common to the maketables.go and the package code.
// AliasType is the type of an alias in AliasMap.
type AliasType int8
const (
Deprecated AliasType = iota
Macro
Legacy
AliasTypeUnknown AliasType = -1
)

29
vendor/golang.org/x/text/internal/language/compact.go generated vendored Normal file
View File

@ -0,0 +1,29 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
// CompactCoreInfo is a compact integer with the three core tags encoded.
type CompactCoreInfo uint32
// GetCompactCore generates a uint32 value that is guaranteed to be unique for
// different language, region, and script values.
func GetCompactCore(t Tag) (cci CompactCoreInfo, ok bool) {
if t.LangID > langNoIndexOffset {
return 0, false
}
cci |= CompactCoreInfo(t.LangID) << (8 + 12)
cci |= CompactCoreInfo(t.ScriptID) << 12
cci |= CompactCoreInfo(t.RegionID)
return cci, true
}
// Tag generates a tag from c.
func (c CompactCoreInfo) Tag() Tag {
return Tag{
LangID: Language(c >> 20),
RegionID: Region(c & 0x3ff),
ScriptID: Script(c>>12) & 0xff,
}
}

View File

@ -0,0 +1,61 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package compact defines a compact representation of language tags.
//
// Common language tags (at least all for which locale information is defined
// in CLDR) are assigned a unique index. Each Tag is associated with such an
// ID for selecting language-related resources (such as translations) as well
// as one for selecting regional defaults (currency, number formatting, etc.)
//
// It may want to export this functionality at some point, but at this point
// this is only available for use within x/text.
package compact // import "golang.org/x/text/internal/language/compact"
import (
"sort"
"strings"
"golang.org/x/text/internal/language"
)
// ID is an integer identifying a single tag.
type ID uint16
func getCoreIndex(t language.Tag) (id ID, ok bool) {
cci, ok := language.GetCompactCore(t)
if !ok {
return 0, false
}
i := sort.Search(len(coreTags), func(i int) bool {
return cci <= coreTags[i]
})
if i == len(coreTags) || coreTags[i] != cci {
return 0, false
}
return ID(i), true
}
// Parent returns the ID of the parent or the root ID if id is already the root.
func (id ID) Parent() ID {
return parents[id]
}
// Tag converts id to an internal language Tag.
func (id ID) Tag() language.Tag {
if int(id) >= len(coreTags) {
return specialTags[int(id)-len(coreTags)]
}
return coreTags[id].Tag()
}
var specialTags []language.Tag
func init() {
tags := strings.Split(specialTagsStr, " ")
specialTags = make([]language.Tag, len(tags))
for i, t := range tags {
specialTags[i] = language.MustParse(t)
}
}

View File

@ -0,0 +1,260 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen.go gen_index.go -output tables.go
//go:generate go run gen_parents.go
package compact
// TODO: Remove above NOTE after:
// - verifying that tables are dropped correctly (most notably matcher tables).
import (
"strings"
"golang.org/x/text/internal/language"
)
// Tag represents a BCP 47 language tag. It is used to specify an instance of a
// specific language or locale. All language tag values are guaranteed to be
// well-formed.
type Tag struct {
// NOTE: exported tags will become part of the public API.
language ID
locale ID
full fullTag // always a language.Tag for now.
}
const _und = 0
type fullTag interface {
IsRoot() bool
Parent() language.Tag
}
// Make a compact Tag from a fully specified internal language Tag.
func Make(t language.Tag) (tag Tag) {
if region := t.TypeForKey("rg"); len(region) == 6 && region[2:] == "zzzz" {
if r, err := language.ParseRegion(region[:2]); err == nil {
tFull := t
t, _ = t.SetTypeForKey("rg", "")
// TODO: should we not consider "va" for the language tag?
var exact1, exact2 bool
tag.language, exact1 = FromTag(t)
t.RegionID = r
tag.locale, exact2 = FromTag(t)
if !exact1 || !exact2 {
tag.full = tFull
}
return tag
}
}
lang, ok := FromTag(t)
tag.language = lang
tag.locale = lang
if !ok {
tag.full = t
}
return tag
}
// Tag returns an internal language Tag version of this tag.
func (t Tag) Tag() language.Tag {
if t.full != nil {
return t.full.(language.Tag)
}
tag := t.language.Tag()
if t.language != t.locale {
loc := t.locale.Tag()
tag, _ = tag.SetTypeForKey("rg", strings.ToLower(loc.RegionID.String())+"zzzz")
}
return tag
}
// IsCompact reports whether this tag is fully defined in terms of ID.
func (t *Tag) IsCompact() bool {
return t.full == nil
}
// MayHaveVariants reports whether a tag may have variants. If it returns false
// it is guaranteed the tag does not have variants.
func (t Tag) MayHaveVariants() bool {
return t.full != nil || int(t.language) >= len(coreTags)
}
// MayHaveExtensions reports whether a tag may have extensions. If it returns
// false it is guaranteed the tag does not have them.
func (t Tag) MayHaveExtensions() bool {
return t.full != nil ||
int(t.language) >= len(coreTags) ||
t.language != t.locale
}
// IsRoot returns true if t is equal to language "und".
func (t Tag) IsRoot() bool {
if t.full != nil {
return t.full.IsRoot()
}
return t.language == _und
}
// Parent returns the CLDR parent of t. In CLDR, missing fields in data for a
// specific language are substituted with fields from the parent language.
// The parent for a language may change for newer versions of CLDR.
func (t Tag) Parent() Tag {
if t.full != nil {
return Make(t.full.Parent())
}
if t.language != t.locale {
// Simulate stripping -u-rg-xxxxxx
return Tag{language: t.language, locale: t.language}
}
// TODO: use parent lookup table once cycle from internal package is
// removed. Probably by internalizing the table and declaring this fast
// enough.
// lang := compactID(internal.Parent(uint16(t.language)))
lang, _ := FromTag(t.language.Tag().Parent())
return Tag{language: lang, locale: lang}
}
// nextToken returns token t and the rest of the string.
func nextToken(s string) (t, tail string) {
p := strings.Index(s[1:], "-")
if p == -1 {
return s[1:], ""
}
p++
return s[1:p], s[p:]
}
// LanguageID returns an index, where 0 <= index < NumCompactTags, for tags
// for which data exists in the text repository.The index will change over time
// and should not be stored in persistent storage. If t does not match a compact
// index, exact will be false and the compact index will be returned for the
// first match after repeatedly taking the Parent of t.
func LanguageID(t Tag) (id ID, exact bool) {
return t.language, t.full == nil
}
// RegionalID returns the ID for the regional variant of this tag. This index is
// used to indicate region-specific overrides, such as default currency, default
// calendar and week data, default time cycle, and default measurement system
// and unit preferences.
//
// For instance, the tag en-GB-u-rg-uszzzz specifies British English with US
// settings for currency, number formatting, etc. The CompactIndex for this tag
// will be that for en-GB, while the RegionalID will be the one corresponding to
// en-US.
func RegionalID(t Tag) (id ID, exact bool) {
return t.locale, t.full == nil
}
// LanguageTag returns t stripped of regional variant indicators.
//
// At the moment this means it is stripped of a regional and variant subtag "rg"
// and "va" in the "u" extension.
func (t Tag) LanguageTag() Tag {
if t.full == nil {
return Tag{language: t.language, locale: t.language}
}
tt := t.Tag()
tt.SetTypeForKey("rg", "")
tt.SetTypeForKey("va", "")
return Make(tt)
}
// RegionalTag returns the regional variant of the tag.
//
// At the moment this means that the region is set from the regional subtag
// "rg" in the "u" extension.
func (t Tag) RegionalTag() Tag {
rt := Tag{language: t.locale, locale: t.locale}
if t.full == nil {
return rt
}
b := language.Builder{}
tag := t.Tag()
// tag, _ = tag.SetTypeForKey("rg", "")
b.SetTag(t.locale.Tag())
if v := tag.Variants(); v != "" {
for _, v := range strings.Split(v, "-") {
b.AddVariant(v)
}
}
for _, e := range tag.Extensions() {
b.AddExt(e)
}
return t
}
// FromTag reports closest matching ID for an internal language Tag.
func FromTag(t language.Tag) (id ID, exact bool) {
// TODO: perhaps give more frequent tags a lower index.
// TODO: we could make the indexes stable. This will excluded some
// possibilities for optimization, so don't do this quite yet.
exact = true
b, s, r := t.Raw()
if t.HasString() {
if t.IsPrivateUse() {
// We have no entries for user-defined tags.
return 0, false
}
hasExtra := false
if t.HasVariants() {
if t.HasExtensions() {
build := language.Builder{}
build.SetTag(language.Tag{LangID: b, ScriptID: s, RegionID: r})
build.AddVariant(t.Variants())
exact = false
t = build.Make()
}
hasExtra = true
} else if _, ok := t.Extension('u'); ok {
// TODO: va may mean something else. Consider not considering it.
// Strip all but the 'va' entry.
old := t
variant := t.TypeForKey("va")
t = language.Tag{LangID: b, ScriptID: s, RegionID: r}
if variant != "" {
t, _ = t.SetTypeForKey("va", variant)
hasExtra = true
}
exact = old == t
} else {
exact = false
}
if hasExtra {
// We have some variants.
for i, s := range specialTags {
if s == t {
return ID(i + len(coreTags)), exact
}
}
exact = false
}
}
if x, ok := getCoreIndex(t); ok {
return x, exact
}
exact = false
if r != 0 && s == 0 {
// Deal with cases where an extra script is inserted for the region.
t, _ := t.Maximize()
if x, ok := getCoreIndex(t); ok {
return x, exact
}
}
for t = t.Parent(); t != root; t = t.Parent() {
// No variants specified: just compare core components.
// The key has the form lllssrrr, where l, s, and r are nibbles for
// respectively the langID, scriptID, and regionID.
if x, ok := getCoreIndex(t); ok {
return x, exact
}
}
return 0, exact
}
var root = language.Tag{}

View File

@ -0,0 +1,120 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
package compact
// parents maps a compact index of a tag to the compact index of the parent of
// this tag.
var parents = []ID{ // 775 elements
// Entry 0 - 3F
0x0000, 0x0000, 0x0001, 0x0001, 0x0000, 0x0004, 0x0000, 0x0006,
0x0000, 0x0008, 0x0000, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a,
0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a,
0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a,
0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x0000,
0x0000, 0x0028, 0x0000, 0x002a, 0x0000, 0x002c, 0x0000, 0x0000,
0x002f, 0x002e, 0x002e, 0x0000, 0x0033, 0x0000, 0x0035, 0x0000,
0x0037, 0x0000, 0x0039, 0x0000, 0x003b, 0x0000, 0x0000, 0x003e,
// Entry 40 - 7F
0x0000, 0x0040, 0x0040, 0x0000, 0x0043, 0x0043, 0x0000, 0x0046,
0x0000, 0x0048, 0x0000, 0x0000, 0x004b, 0x004a, 0x004a, 0x0000,
0x004f, 0x004f, 0x004f, 0x004f, 0x0000, 0x0054, 0x0054, 0x0000,
0x0057, 0x0000, 0x0059, 0x0000, 0x005b, 0x0000, 0x005d, 0x005d,
0x0000, 0x0060, 0x0000, 0x0062, 0x0000, 0x0064, 0x0000, 0x0066,
0x0066, 0x0000, 0x0069, 0x0000, 0x006b, 0x006b, 0x006b, 0x006b,
0x006b, 0x006b, 0x006b, 0x0000, 0x0073, 0x0000, 0x0075, 0x0000,
0x0077, 0x0000, 0x0000, 0x007a, 0x0000, 0x007c, 0x0000, 0x007e,
// Entry 80 - BF
0x0000, 0x0080, 0x0080, 0x0000, 0x0083, 0x0083, 0x0000, 0x0086,
0x0087, 0x0087, 0x0087, 0x0086, 0x0088, 0x0087, 0x0087, 0x0087,
0x0086, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0088,
0x0087, 0x0087, 0x0087, 0x0087, 0x0088, 0x0087, 0x0088, 0x0087,
0x0087, 0x0088, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087,
0x0087, 0x0087, 0x0087, 0x0086, 0x0087, 0x0087, 0x0087, 0x0087,
0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087,
0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0086, 0x0087, 0x0086,
// Entry C0 - FF
0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087,
0x0088, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087,
0x0086, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0088, 0x0087,
0x0087, 0x0088, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087,
0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0086, 0x0086, 0x0087,
0x0087, 0x0086, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0000,
0x00ef, 0x0000, 0x00f1, 0x00f2, 0x00f2, 0x00f2, 0x00f2, 0x00f2,
0x00f2, 0x00f2, 0x00f2, 0x00f2, 0x00f1, 0x00f2, 0x00f1, 0x00f1,
// Entry 100 - 13F
0x00f2, 0x00f2, 0x00f1, 0x00f2, 0x00f2, 0x00f2, 0x00f2, 0x00f1,
0x00f2, 0x00f2, 0x00f2, 0x00f2, 0x00f2, 0x00f2, 0x0000, 0x010e,
0x0000, 0x0110, 0x0000, 0x0112, 0x0000, 0x0114, 0x0114, 0x0000,
0x0117, 0x0117, 0x0117, 0x0117, 0x0000, 0x011c, 0x0000, 0x011e,
0x0000, 0x0120, 0x0120, 0x0000, 0x0123, 0x0123, 0x0123, 0x0123,
0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123,
0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123,
0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123,
// Entry 140 - 17F
0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123,
0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123,
0x0123, 0x0123, 0x0000, 0x0152, 0x0000, 0x0154, 0x0000, 0x0156,
0x0000, 0x0158, 0x0000, 0x015a, 0x0000, 0x015c, 0x015c, 0x015c,
0x0000, 0x0160, 0x0000, 0x0000, 0x0163, 0x0000, 0x0165, 0x0000,
0x0167, 0x0167, 0x0167, 0x0000, 0x016b, 0x0000, 0x016d, 0x0000,
0x016f, 0x0000, 0x0171, 0x0171, 0x0000, 0x0174, 0x0000, 0x0176,
0x0000, 0x0178, 0x0000, 0x017a, 0x0000, 0x017c, 0x0000, 0x017e,
// Entry 180 - 1BF
0x0000, 0x0000, 0x0000, 0x0182, 0x0000, 0x0184, 0x0184, 0x0184,
0x0184, 0x0000, 0x0000, 0x0000, 0x018b, 0x0000, 0x0000, 0x018e,
0x0000, 0x0000, 0x0191, 0x0000, 0x0000, 0x0000, 0x0195, 0x0000,
0x0197, 0x0000, 0x0000, 0x019a, 0x0000, 0x0000, 0x019d, 0x0000,
0x019f, 0x0000, 0x01a1, 0x0000, 0x01a3, 0x0000, 0x01a5, 0x0000,
0x01a7, 0x0000, 0x01a9, 0x0000, 0x01ab, 0x0000, 0x01ad, 0x0000,
0x01af, 0x0000, 0x01b1, 0x01b1, 0x0000, 0x01b4, 0x0000, 0x01b6,
0x0000, 0x01b8, 0x0000, 0x01ba, 0x0000, 0x01bc, 0x0000, 0x0000,
// Entry 1C0 - 1FF
0x01bf, 0x0000, 0x01c1, 0x0000, 0x01c3, 0x0000, 0x01c5, 0x0000,
0x01c7, 0x0000, 0x01c9, 0x0000, 0x01cb, 0x01cb, 0x01cb, 0x01cb,
0x0000, 0x01d0, 0x0000, 0x01d2, 0x01d2, 0x0000, 0x01d5, 0x0000,
0x01d7, 0x0000, 0x01d9, 0x0000, 0x01db, 0x0000, 0x01dd, 0x0000,
0x01df, 0x01df, 0x0000, 0x01e2, 0x0000, 0x01e4, 0x0000, 0x01e6,
0x0000, 0x01e8, 0x0000, 0x01ea, 0x0000, 0x01ec, 0x0000, 0x01ee,
0x0000, 0x01f0, 0x0000, 0x0000, 0x01f3, 0x0000, 0x01f5, 0x01f5,
0x01f5, 0x0000, 0x01f9, 0x0000, 0x01fb, 0x0000, 0x01fd, 0x0000,
// Entry 200 - 23F
0x01ff, 0x0000, 0x0000, 0x0202, 0x0000, 0x0204, 0x0204, 0x0000,
0x0207, 0x0000, 0x0209, 0x0209, 0x0000, 0x020c, 0x020c, 0x0000,
0x020f, 0x020f, 0x020f, 0x020f, 0x020f, 0x020f, 0x020f, 0x0000,
0x0217, 0x0000, 0x0219, 0x0000, 0x021b, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0221, 0x0000, 0x0000, 0x0224, 0x0000, 0x0226,
0x0226, 0x0000, 0x0229, 0x0000, 0x022b, 0x022b, 0x0000, 0x0000,
0x022f, 0x022e, 0x022e, 0x0000, 0x0000, 0x0234, 0x0000, 0x0236,
0x0000, 0x0238, 0x0000, 0x0244, 0x023a, 0x0244, 0x0244, 0x0244,
// Entry 240 - 27F
0x0244, 0x0244, 0x0244, 0x0244, 0x023a, 0x0244, 0x0244, 0x0000,
0x0247, 0x0247, 0x0247, 0x0000, 0x024b, 0x0000, 0x024d, 0x0000,
0x024f, 0x024f, 0x0000, 0x0252, 0x0000, 0x0254, 0x0254, 0x0254,
0x0254, 0x0254, 0x0254, 0x0000, 0x025b, 0x0000, 0x025d, 0x0000,
0x025f, 0x0000, 0x0261, 0x0000, 0x0263, 0x0000, 0x0265, 0x0000,
0x0000, 0x0268, 0x0268, 0x0268, 0x0000, 0x026c, 0x0000, 0x026e,
0x0000, 0x0270, 0x0000, 0x0000, 0x0000, 0x0274, 0x0273, 0x0273,
0x0000, 0x0278, 0x0000, 0x027a, 0x0000, 0x027c, 0x0000, 0x0000,
// Entry 280 - 2BF
0x0000, 0x0000, 0x0281, 0x0000, 0x0000, 0x0284, 0x0000, 0x0286,
0x0286, 0x0286, 0x0286, 0x0000, 0x028b, 0x028b, 0x028b, 0x0000,
0x028f, 0x028f, 0x028f, 0x028f, 0x028f, 0x0000, 0x0295, 0x0295,
0x0295, 0x0295, 0x0000, 0x0000, 0x0000, 0x0000, 0x029d, 0x029d,
0x029d, 0x0000, 0x02a1, 0x02a1, 0x02a1, 0x02a1, 0x0000, 0x0000,
0x02a7, 0x02a7, 0x02a7, 0x02a7, 0x0000, 0x02ac, 0x0000, 0x02ae,
0x02ae, 0x0000, 0x02b1, 0x0000, 0x02b3, 0x0000, 0x02b5, 0x02b5,
0x0000, 0x0000, 0x02b9, 0x0000, 0x0000, 0x0000, 0x02bd, 0x0000,
// Entry 2C0 - 2FF
0x02bf, 0x02bf, 0x0000, 0x0000, 0x02c3, 0x0000, 0x02c5, 0x0000,
0x02c7, 0x0000, 0x02c9, 0x0000, 0x02cb, 0x0000, 0x02cd, 0x02cd,
0x0000, 0x0000, 0x02d1, 0x0000, 0x02d3, 0x02d0, 0x02d0, 0x0000,
0x0000, 0x02d8, 0x02d7, 0x02d7, 0x0000, 0x0000, 0x02dd, 0x0000,
0x02df, 0x0000, 0x02e1, 0x0000, 0x0000, 0x02e4, 0x0000, 0x02e6,
0x0000, 0x0000, 0x02e9, 0x0000, 0x02eb, 0x0000, 0x02ed, 0x0000,
0x02ef, 0x02ef, 0x0000, 0x0000, 0x02f3, 0x02f2, 0x02f2, 0x0000,
0x02f7, 0x0000, 0x02f9, 0x02f9, 0x02f9, 0x02f9, 0x02f9, 0x0000,
// Entry 300 - 33F
0x02ff, 0x0300, 0x02ff, 0x0000, 0x0303, 0x0051, 0x00e6,
} // Size: 1574 bytes
// Total table size 1574 bytes (1KiB); checksum: 895AAF0B

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,91 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package compact
var (
und = Tag{}
Und Tag = Tag{}
Afrikaans Tag = Tag{language: afIndex, locale: afIndex}
Amharic Tag = Tag{language: amIndex, locale: amIndex}
Arabic Tag = Tag{language: arIndex, locale: arIndex}
ModernStandardArabic Tag = Tag{language: ar001Index, locale: ar001Index}
Azerbaijani Tag = Tag{language: azIndex, locale: azIndex}
Bulgarian Tag = Tag{language: bgIndex, locale: bgIndex}
Bengali Tag = Tag{language: bnIndex, locale: bnIndex}
Catalan Tag = Tag{language: caIndex, locale: caIndex}
Czech Tag = Tag{language: csIndex, locale: csIndex}
Danish Tag = Tag{language: daIndex, locale: daIndex}
German Tag = Tag{language: deIndex, locale: deIndex}
Greek Tag = Tag{language: elIndex, locale: elIndex}
English Tag = Tag{language: enIndex, locale: enIndex}
AmericanEnglish Tag = Tag{language: enUSIndex, locale: enUSIndex}
BritishEnglish Tag = Tag{language: enGBIndex, locale: enGBIndex}
Spanish Tag = Tag{language: esIndex, locale: esIndex}
EuropeanSpanish Tag = Tag{language: esESIndex, locale: esESIndex}
LatinAmericanSpanish Tag = Tag{language: es419Index, locale: es419Index}
Estonian Tag = Tag{language: etIndex, locale: etIndex}
Persian Tag = Tag{language: faIndex, locale: faIndex}
Finnish Tag = Tag{language: fiIndex, locale: fiIndex}
Filipino Tag = Tag{language: filIndex, locale: filIndex}
French Tag = Tag{language: frIndex, locale: frIndex}
CanadianFrench Tag = Tag{language: frCAIndex, locale: frCAIndex}
Gujarati Tag = Tag{language: guIndex, locale: guIndex}
Hebrew Tag = Tag{language: heIndex, locale: heIndex}
Hindi Tag = Tag{language: hiIndex, locale: hiIndex}
Croatian Tag = Tag{language: hrIndex, locale: hrIndex}
Hungarian Tag = Tag{language: huIndex, locale: huIndex}
Armenian Tag = Tag{language: hyIndex, locale: hyIndex}
Indonesian Tag = Tag{language: idIndex, locale: idIndex}
Icelandic Tag = Tag{language: isIndex, locale: isIndex}
Italian Tag = Tag{language: itIndex, locale: itIndex}
Japanese Tag = Tag{language: jaIndex, locale: jaIndex}
Georgian Tag = Tag{language: kaIndex, locale: kaIndex}
Kazakh Tag = Tag{language: kkIndex, locale: kkIndex}
Khmer Tag = Tag{language: kmIndex, locale: kmIndex}
Kannada Tag = Tag{language: knIndex, locale: knIndex}
Korean Tag = Tag{language: koIndex, locale: koIndex}
Kirghiz Tag = Tag{language: kyIndex, locale: kyIndex}
Lao Tag = Tag{language: loIndex, locale: loIndex}
Lithuanian Tag = Tag{language: ltIndex, locale: ltIndex}
Latvian Tag = Tag{language: lvIndex, locale: lvIndex}
Macedonian Tag = Tag{language: mkIndex, locale: mkIndex}
Malayalam Tag = Tag{language: mlIndex, locale: mlIndex}
Mongolian Tag = Tag{language: mnIndex, locale: mnIndex}
Marathi Tag = Tag{language: mrIndex, locale: mrIndex}
Malay Tag = Tag{language: msIndex, locale: msIndex}
Burmese Tag = Tag{language: myIndex, locale: myIndex}
Nepali Tag = Tag{language: neIndex, locale: neIndex}
Dutch Tag = Tag{language: nlIndex, locale: nlIndex}
Norwegian Tag = Tag{language: noIndex, locale: noIndex}
Punjabi Tag = Tag{language: paIndex, locale: paIndex}
Polish Tag = Tag{language: plIndex, locale: plIndex}
Portuguese Tag = Tag{language: ptIndex, locale: ptIndex}
BrazilianPortuguese Tag = Tag{language: ptBRIndex, locale: ptBRIndex}
EuropeanPortuguese Tag = Tag{language: ptPTIndex, locale: ptPTIndex}
Romanian Tag = Tag{language: roIndex, locale: roIndex}
Russian Tag = Tag{language: ruIndex, locale: ruIndex}
Sinhala Tag = Tag{language: siIndex, locale: siIndex}
Slovak Tag = Tag{language: skIndex, locale: skIndex}
Slovenian Tag = Tag{language: slIndex, locale: slIndex}
Albanian Tag = Tag{language: sqIndex, locale: sqIndex}
Serbian Tag = Tag{language: srIndex, locale: srIndex}
SerbianLatin Tag = Tag{language: srLatnIndex, locale: srLatnIndex}
Swedish Tag = Tag{language: svIndex, locale: svIndex}
Swahili Tag = Tag{language: swIndex, locale: swIndex}
Tamil Tag = Tag{language: taIndex, locale: taIndex}
Telugu Tag = Tag{language: teIndex, locale: teIndex}
Thai Tag = Tag{language: thIndex, locale: thIndex}
Turkish Tag = Tag{language: trIndex, locale: trIndex}
Ukrainian Tag = Tag{language: ukIndex, locale: ukIndex}
Urdu Tag = Tag{language: urIndex, locale: urIndex}
Uzbek Tag = Tag{language: uzIndex, locale: uzIndex}
Vietnamese Tag = Tag{language: viIndex, locale: viIndex}
Chinese Tag = Tag{language: zhIndex, locale: zhIndex}
SimplifiedChinese Tag = Tag{language: zhHansIndex, locale: zhHansIndex}
TraditionalChinese Tag = Tag{language: zhHantIndex, locale: zhHantIndex}
Zulu Tag = Tag{language: zuIndex, locale: zuIndex}
)

167
vendor/golang.org/x/text/internal/language/compose.go generated vendored Normal file
View File

@ -0,0 +1,167 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import (
"sort"
"strings"
)
// A Builder allows constructing a Tag from individual components.
// Its main user is Compose in the top-level language package.
type Builder struct {
Tag Tag
private string // the x extension
variants []string
extensions []string
}
// Make returns a new Tag from the current settings.
func (b *Builder) Make() Tag {
t := b.Tag
if len(b.extensions) > 0 || len(b.variants) > 0 {
sort.Sort(sortVariants(b.variants))
sort.Strings(b.extensions)
if b.private != "" {
b.extensions = append(b.extensions, b.private)
}
n := maxCoreSize + tokenLen(b.variants...) + tokenLen(b.extensions...)
buf := make([]byte, n)
p := t.genCoreBytes(buf)
t.pVariant = byte(p)
p += appendTokens(buf[p:], b.variants...)
t.pExt = uint16(p)
p += appendTokens(buf[p:], b.extensions...)
t.str = string(buf[:p])
// We may not always need to remake the string, but when or when not
// to do so is rather tricky.
scan := makeScanner(buf[:p])
t, _ = parse(&scan, "")
return t
} else if b.private != "" {
t.str = b.private
t.RemakeString()
}
return t
}
// SetTag copies all the settings from a given Tag. Any previously set values
// are discarded.
func (b *Builder) SetTag(t Tag) {
b.Tag.LangID = t.LangID
b.Tag.RegionID = t.RegionID
b.Tag.ScriptID = t.ScriptID
// TODO: optimize
b.variants = b.variants[:0]
if variants := t.Variants(); variants != "" {
for _, vr := range strings.Split(variants[1:], "-") {
b.variants = append(b.variants, vr)
}
}
b.extensions, b.private = b.extensions[:0], ""
for _, e := range t.Extensions() {
b.AddExt(e)
}
}
// AddExt adds extension e to the tag. e must be a valid extension as returned
// by Tag.Extension. If the extension already exists, it will be discarded,
// except for a -u extension, where non-existing key-type pairs will added.
func (b *Builder) AddExt(e string) {
if e[0] == 'x' {
if b.private == "" {
b.private = e
}
return
}
for i, s := range b.extensions {
if s[0] == e[0] {
if e[0] == 'u' {
b.extensions[i] += e[1:]
}
return
}
}
b.extensions = append(b.extensions, e)
}
// SetExt sets the extension e to the tag. e must be a valid extension as
// returned by Tag.Extension. If the extension already exists, it will be
// overwritten, except for a -u extension, where the individual key-type pairs
// will be set.
func (b *Builder) SetExt(e string) {
if e[0] == 'x' {
b.private = e
return
}
for i, s := range b.extensions {
if s[0] == e[0] {
if e[0] == 'u' {
b.extensions[i] = e + s[1:]
} else {
b.extensions[i] = e
}
return
}
}
b.extensions = append(b.extensions, e)
}
// AddVariant adds any number of variants.
func (b *Builder) AddVariant(v ...string) {
for _, v := range v {
if v != "" {
b.variants = append(b.variants, v)
}
}
}
// ClearVariants removes any variants previously added, including those
// copied from a Tag in SetTag.
func (b *Builder) ClearVariants() {
b.variants = b.variants[:0]
}
// ClearExtensions removes any extensions previously added, including those
// copied from a Tag in SetTag.
func (b *Builder) ClearExtensions() {
b.private = ""
b.extensions = b.extensions[:0]
}
func tokenLen(token ...string) (n int) {
for _, t := range token {
n += len(t) + 1
}
return
}
func appendTokens(b []byte, token ...string) int {
p := 0
for _, t := range token {
b[p] = '-'
copy(b[p+1:], t)
p += 1 + len(t)
}
return p
}
type sortVariants []string
func (s sortVariants) Len() int {
return len(s)
}
func (s sortVariants) Swap(i, j int) {
s[j], s[i] = s[i], s[j]
}
func (s sortVariants) Less(i, j int) bool {
return variantIndex[s[i]] < variantIndex[s[j]]
}

28
vendor/golang.org/x/text/internal/language/coverage.go generated vendored Normal file
View File

@ -0,0 +1,28 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
// BaseLanguages returns the list of all supported base languages. It generates
// the list by traversing the internal structures.
func BaseLanguages() []Language {
base := make([]Language, 0, NumLanguages)
for i := 0; i < langNoIndexOffset; i++ {
// We included "und" already for the value 0.
if i != nonCanonicalUnd {
base = append(base, Language(i))
}
}
i := langNoIndexOffset
for _, v := range langNoIndex {
for k := 0; k < 8; k++ {
if v&1 == 1 {
base = append(base, Language(i))
}
v >>= 1
i++
}
}
return base
}

627
vendor/golang.org/x/text/internal/language/language.go generated vendored Normal file
View File

@ -0,0 +1,627 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen.go gen_common.go -output tables.go
package language // import "golang.org/x/text/internal/language"
// TODO: Remove above NOTE after:
// - verifying that tables are dropped correctly (most notably matcher tables).
import (
"errors"
"fmt"
"strings"
)
const (
// maxCoreSize is the maximum size of a BCP 47 tag without variants and
// extensions. Equals max lang (3) + script (4) + max reg (3) + 2 dashes.
maxCoreSize = 12
// max99thPercentileSize is a somewhat arbitrary buffer size that presumably
// is large enough to hold at least 99% of the BCP 47 tags.
max99thPercentileSize = 32
// maxSimpleUExtensionSize is the maximum size of a -u extension with one
// key-type pair. Equals len("-u-") + key (2) + dash + max value (8).
maxSimpleUExtensionSize = 14
)
// Tag represents a BCP 47 language tag. It is used to specify an instance of a
// specific language or locale. All language tag values are guaranteed to be
// well-formed. The zero value of Tag is Und.
type Tag struct {
// TODO: the following fields have the form TagTypeID. This name is chosen
// to allow refactoring the public package without conflicting with its
// Base, Script, and Region methods. Once the transition is fully completed
// the ID can be stripped from the name.
LangID Language
RegionID Region
// TODO: we will soon run out of positions for ScriptID. Idea: instead of
// storing lang, region, and ScriptID codes, store only the compact index and
// have a lookup table from this code to its expansion. This greatly speeds
// up table lookup, speed up common variant cases.
// This will also immediately free up 3 extra bytes. Also, the pVariant
// field can now be moved to the lookup table, as the compact index uniquely
// determines the offset of a possible variant.
ScriptID Script
pVariant byte // offset in str, includes preceding '-'
pExt uint16 // offset of first extension, includes preceding '-'
// str is the string representation of the Tag. It will only be used if the
// tag has variants or extensions.
str string
}
// Make is a convenience wrapper for Parse that omits the error.
// In case of an error, a sensible default is returned.
func Make(s string) Tag {
t, _ := Parse(s)
return t
}
// Raw returns the raw base language, script and region, without making an
// attempt to infer their values.
// TODO: consider removing
func (t Tag) Raw() (b Language, s Script, r Region) {
return t.LangID, t.ScriptID, t.RegionID
}
// equalTags compares language, script and region subtags only.
func (t Tag) equalTags(a Tag) bool {
return t.LangID == a.LangID && t.ScriptID == a.ScriptID && t.RegionID == a.RegionID
}
// IsRoot returns true if t is equal to language "und".
func (t Tag) IsRoot() bool {
if int(t.pVariant) < len(t.str) {
return false
}
return t.equalTags(Und)
}
// IsPrivateUse reports whether the Tag consists solely of an IsPrivateUse use
// tag.
func (t Tag) IsPrivateUse() bool {
return t.str != "" && t.pVariant == 0
}
// RemakeString is used to update t.str in case lang, script or region changed.
// It is assumed that pExt and pVariant still point to the start of the
// respective parts.
func (t *Tag) RemakeString() {
if t.str == "" {
return
}
extra := t.str[t.pVariant:]
if t.pVariant > 0 {
extra = extra[1:]
}
if t.equalTags(Und) && strings.HasPrefix(extra, "x-") {
t.str = extra
t.pVariant = 0
t.pExt = 0
return
}
var buf [max99thPercentileSize]byte // avoid extra memory allocation in most cases.
b := buf[:t.genCoreBytes(buf[:])]
if extra != "" {
diff := len(b) - int(t.pVariant)
b = append(b, '-')
b = append(b, extra...)
t.pVariant = uint8(int(t.pVariant) + diff)
t.pExt = uint16(int(t.pExt) + diff)
} else {
t.pVariant = uint8(len(b))
t.pExt = uint16(len(b))
}
t.str = string(b)
}
// genCoreBytes writes a string for the base languages, script and region tags
// to the given buffer and returns the number of bytes written. It will never
// write more than maxCoreSize bytes.
func (t *Tag) genCoreBytes(buf []byte) int {
n := t.LangID.StringToBuf(buf[:])
if t.ScriptID != 0 {
n += copy(buf[n:], "-")
n += copy(buf[n:], t.ScriptID.String())
}
if t.RegionID != 0 {
n += copy(buf[n:], "-")
n += copy(buf[n:], t.RegionID.String())
}
return n
}
// String returns the canonical string representation of the language tag.
func (t Tag) String() string {
if t.str != "" {
return t.str
}
if t.ScriptID == 0 && t.RegionID == 0 {
return t.LangID.String()
}
buf := [maxCoreSize]byte{}
return string(buf[:t.genCoreBytes(buf[:])])
}
// MarshalText implements encoding.TextMarshaler.
func (t Tag) MarshalText() (text []byte, err error) {
if t.str != "" {
text = append(text, t.str...)
} else if t.ScriptID == 0 && t.RegionID == 0 {
text = append(text, t.LangID.String()...)
} else {
buf := [maxCoreSize]byte{}
text = buf[:t.genCoreBytes(buf[:])]
}
return text, nil
}
// UnmarshalText implements encoding.TextUnmarshaler.
func (t *Tag) UnmarshalText(text []byte) error {
tag, err := Parse(string(text))
*t = tag
return err
}
// Variants returns the part of the tag holding all variants or the empty string
// if there are no variants defined.
func (t Tag) Variants() string {
if t.pVariant == 0 {
return ""
}
return t.str[t.pVariant:t.pExt]
}
// VariantOrPrivateUseTags returns variants or private use tags.
func (t Tag) VariantOrPrivateUseTags() string {
if t.pExt > 0 {
return t.str[t.pVariant:t.pExt]
}
return t.str[t.pVariant:]
}
// HasString reports whether this tag defines more than just the raw
// components.
func (t Tag) HasString() bool {
return t.str != ""
}
// Parent returns the CLDR parent of t. In CLDR, missing fields in data for a
// specific language are substituted with fields from the parent language.
// The parent for a language may change for newer versions of CLDR.
func (t Tag) Parent() Tag {
if t.str != "" {
// Strip the variants and extensions.
b, s, r := t.Raw()
t = Tag{LangID: b, ScriptID: s, RegionID: r}
if t.RegionID == 0 && t.ScriptID != 0 && t.LangID != 0 {
base, _ := addTags(Tag{LangID: t.LangID})
if base.ScriptID == t.ScriptID {
return Tag{LangID: t.LangID}
}
}
return t
}
if t.LangID != 0 {
if t.RegionID != 0 {
maxScript := t.ScriptID
if maxScript == 0 {
max, _ := addTags(t)
maxScript = max.ScriptID
}
for i := range parents {
if Language(parents[i].lang) == t.LangID && Script(parents[i].maxScript) == maxScript {
for _, r := range parents[i].fromRegion {
if Region(r) == t.RegionID {
return Tag{
LangID: t.LangID,
ScriptID: Script(parents[i].script),
RegionID: Region(parents[i].toRegion),
}
}
}
}
}
// Strip the script if it is the default one.
base, _ := addTags(Tag{LangID: t.LangID})
if base.ScriptID != maxScript {
return Tag{LangID: t.LangID, ScriptID: maxScript}
}
return Tag{LangID: t.LangID}
} else if t.ScriptID != 0 {
// The parent for an base-script pair with a non-default script is
// "und" instead of the base language.
base, _ := addTags(Tag{LangID: t.LangID})
if base.ScriptID != t.ScriptID {
return Und
}
return Tag{LangID: t.LangID}
}
}
return Und
}
// ParseExtension parses s as an extension and returns it on success.
func ParseExtension(s string) (ext string, err error) {
defer func() {
if recover() != nil {
ext = ""
err = ErrSyntax
}
}()
scan := makeScannerString(s)
var end int
if n := len(scan.token); n != 1 {
return "", ErrSyntax
}
scan.toLower(0, len(scan.b))
end = parseExtension(&scan)
if end != len(s) {
return "", ErrSyntax
}
return string(scan.b), nil
}
// HasVariants reports whether t has variants.
func (t Tag) HasVariants() bool {
return uint16(t.pVariant) < t.pExt
}
// HasExtensions reports whether t has extensions.
func (t Tag) HasExtensions() bool {
return int(t.pExt) < len(t.str)
}
// Extension returns the extension of type x for tag t. It will return
// false for ok if t does not have the requested extension. The returned
// extension will be invalid in this case.
func (t Tag) Extension(x byte) (ext string, ok bool) {
for i := int(t.pExt); i < len(t.str)-1; {
var ext string
i, ext = getExtension(t.str, i)
if ext[0] == x {
return ext, true
}
}
return "", false
}
// Extensions returns all extensions of t.
func (t Tag) Extensions() []string {
e := []string{}
for i := int(t.pExt); i < len(t.str)-1; {
var ext string
i, ext = getExtension(t.str, i)
e = append(e, ext)
}
return e
}
// TypeForKey returns the type associated with the given key, where key and type
// are of the allowed values defined for the Unicode locale extension ('u') in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
// TypeForKey will traverse the inheritance chain to get the correct value.
//
// If there are multiple types associated with a key, only the first will be
// returned. If there is no type associated with a key, it returns the empty
// string.
func (t Tag) TypeForKey(key string) string {
if _, start, end, _ := t.findTypeForKey(key); end != start {
s := t.str[start:end]
if p := strings.IndexByte(s, '-'); p >= 0 {
s = s[:p]
}
return s
}
return ""
}
var (
errPrivateUse = errors.New("cannot set a key on a private use tag")
errInvalidArguments = errors.New("invalid key or type")
)
// SetTypeForKey returns a new Tag with the key set to type, where key and type
// are of the allowed values defined for the Unicode locale extension ('u') in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
// An empty value removes an existing pair with the same key.
func (t Tag) SetTypeForKey(key, value string) (Tag, error) {
if t.IsPrivateUse() {
return t, errPrivateUse
}
if len(key) != 2 {
return t, errInvalidArguments
}
// Remove the setting if value is "".
if value == "" {
start, sep, end, _ := t.findTypeForKey(key)
if start != sep {
// Remove a possible empty extension.
switch {
case t.str[start-2] != '-': // has previous elements.
case end == len(t.str), // end of string
end+2 < len(t.str) && t.str[end+2] == '-': // end of extension
start -= 2
}
if start == int(t.pVariant) && end == len(t.str) {
t.str = ""
t.pVariant, t.pExt = 0, 0
} else {
t.str = fmt.Sprintf("%s%s", t.str[:start], t.str[end:])
}
}
return t, nil
}
if len(value) < 3 || len(value) > 8 {
return t, errInvalidArguments
}
var (
buf [maxCoreSize + maxSimpleUExtensionSize]byte
uStart int // start of the -u extension.
)
// Generate the tag string if needed.
if t.str == "" {
uStart = t.genCoreBytes(buf[:])
buf[uStart] = '-'
uStart++
}
// Create new key-type pair and parse it to verify.
b := buf[uStart:]
copy(b, "u-")
copy(b[2:], key)
b[4] = '-'
b = b[:5+copy(b[5:], value)]
scan := makeScanner(b)
if parseExtensions(&scan); scan.err != nil {
return t, scan.err
}
// Assemble the replacement string.
if t.str == "" {
t.pVariant, t.pExt = byte(uStart-1), uint16(uStart-1)
t.str = string(buf[:uStart+len(b)])
} else {
s := t.str
start, sep, end, hasExt := t.findTypeForKey(key)
if start == sep {
if hasExt {
b = b[2:]
}
t.str = fmt.Sprintf("%s-%s%s", s[:sep], b, s[end:])
} else {
t.str = fmt.Sprintf("%s-%s%s", s[:start+3], value, s[end:])
}
}
return t, nil
}
// findTypeForKey returns the start and end position for the type corresponding
// to key or the point at which to insert the key-value pair if the type
// wasn't found. The hasExt return value reports whether an -u extension was present.
// Note: the extensions are typically very small and are likely to contain
// only one key-type pair.
func (t Tag) findTypeForKey(key string) (start, sep, end int, hasExt bool) {
p := int(t.pExt)
if len(key) != 2 || p == len(t.str) || p == 0 {
return p, p, p, false
}
s := t.str
// Find the correct extension.
for p++; s[p] != 'u'; p++ {
if s[p] > 'u' {
p--
return p, p, p, false
}
if p = nextExtension(s, p); p == len(s) {
return len(s), len(s), len(s), false
}
}
// Proceed to the hyphen following the extension name.
p++
// curKey is the key currently being processed.
curKey := ""
// Iterate over keys until we get the end of a section.
for {
end = p
for p++; p < len(s) && s[p] != '-'; p++ {
}
n := p - end - 1
if n <= 2 && curKey == key {
if sep < end {
sep++
}
return start, sep, end, true
}
switch n {
case 0, // invalid string
1: // next extension
return end, end, end, true
case 2:
// next key
curKey = s[end+1 : p]
if curKey > key {
return end, end, end, true
}
start = end
sep = p
}
}
}
// ParseBase parses a 2- or 3-letter ISO 639 code.
// It returns a ValueError if s is a well-formed but unknown language identifier
// or another error if another error occurred.
func ParseBase(s string) (l Language, err error) {
defer func() {
if recover() != nil {
l = 0
err = ErrSyntax
}
}()
if n := len(s); n < 2 || 3 < n {
return 0, ErrSyntax
}
var buf [3]byte
return getLangID(buf[:copy(buf[:], s)])
}
// ParseScript parses a 4-letter ISO 15924 code.
// It returns a ValueError if s is a well-formed but unknown script identifier
// or another error if another error occurred.
func ParseScript(s string) (scr Script, err error) {
defer func() {
if recover() != nil {
scr = 0
err = ErrSyntax
}
}()
if len(s) != 4 {
return 0, ErrSyntax
}
var buf [4]byte
return getScriptID(script, buf[:copy(buf[:], s)])
}
// EncodeM49 returns the Region for the given UN M.49 code.
// It returns an error if r is not a valid code.
func EncodeM49(r int) (Region, error) {
return getRegionM49(r)
}
// ParseRegion parses a 2- or 3-letter ISO 3166-1 or a UN M.49 code.
// It returns a ValueError if s is a well-formed but unknown region identifier
// or another error if another error occurred.
func ParseRegion(s string) (r Region, err error) {
defer func() {
if recover() != nil {
r = 0
err = ErrSyntax
}
}()
if n := len(s); n < 2 || 3 < n {
return 0, ErrSyntax
}
var buf [3]byte
return getRegionID(buf[:copy(buf[:], s)])
}
// IsCountry returns whether this region is a country or autonomous area. This
// includes non-standard definitions from CLDR.
func (r Region) IsCountry() bool {
if r == 0 || r.IsGroup() || r.IsPrivateUse() && r != _XK {
return false
}
return true
}
// IsGroup returns whether this region defines a collection of regions. This
// includes non-standard definitions from CLDR.
func (r Region) IsGroup() bool {
if r == 0 {
return false
}
return int(regionInclusion[r]) < len(regionContainment)
}
// Contains returns whether Region c is contained by Region r. It returns true
// if c == r.
func (r Region) Contains(c Region) bool {
if r == c {
return true
}
g := regionInclusion[r]
if g >= nRegionGroups {
return false
}
m := regionContainment[g]
d := regionInclusion[c]
b := regionInclusionBits[d]
// A contained country may belong to multiple disjoint groups. Matching any
// of these indicates containment. If the contained region is a group, it
// must strictly be a subset.
if d >= nRegionGroups {
return b&m != 0
}
return b&^m == 0
}
var errNoTLD = errors.New("language: region is not a valid ccTLD")
// TLD returns the country code top-level domain (ccTLD). UK is returned for GB.
// In all other cases it returns either the region itself or an error.
//
// This method may return an error for a region for which there exists a
// canonical form with a ccTLD. To get that ccTLD canonicalize r first. The
// region will already be canonicalized it was obtained from a Tag that was
// obtained using any of the default methods.
func (r Region) TLD() (Region, error) {
// See http://en.wikipedia.org/wiki/Country_code_top-level_domain for the
// difference between ISO 3166-1 and IANA ccTLD.
if r == _GB {
r = _UK
}
if (r.typ() & ccTLD) == 0 {
return 0, errNoTLD
}
return r, nil
}
// Canonicalize returns the region or a possible replacement if the region is
// deprecated. It will not return a replacement for deprecated regions that
// are split into multiple regions.
func (r Region) Canonicalize() Region {
if cr := normRegion(r); cr != 0 {
return cr
}
return r
}
// Variant represents a registered variant of a language as defined by BCP 47.
type Variant struct {
ID uint8
str string
}
// ParseVariant parses and returns a Variant. An error is returned if s is not
// a valid variant.
func ParseVariant(s string) (v Variant, err error) {
defer func() {
if recover() != nil {
v = Variant{}
err = ErrSyntax
}
}()
s = strings.ToLower(s)
if id, ok := variantIndex[s]; ok {
return Variant{id, s}, nil
}
return Variant{}, NewValueError([]byte(s))
}
// String returns the string representation of the variant.
func (v Variant) String() string {
return v.str
}

412
vendor/golang.org/x/text/internal/language/lookup.go generated vendored Normal file
View File

@ -0,0 +1,412 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import (
"bytes"
"fmt"
"sort"
"strconv"
"golang.org/x/text/internal/tag"
)
// findIndex tries to find the given tag in idx and returns a standardized error
// if it could not be found.
func findIndex(idx tag.Index, key []byte, form string) (index int, err error) {
if !tag.FixCase(form, key) {
return 0, ErrSyntax
}
i := idx.Index(key)
if i == -1 {
return 0, NewValueError(key)
}
return i, nil
}
func searchUint(imap []uint16, key uint16) int {
return sort.Search(len(imap), func(i int) bool {
return imap[i] >= key
})
}
type Language uint16
// getLangID returns the langID of s if s is a canonical subtag
// or langUnknown if s is not a canonical subtag.
func getLangID(s []byte) (Language, error) {
if len(s) == 2 {
return getLangISO2(s)
}
return getLangISO3(s)
}
// TODO language normalization as well as the AliasMaps could be moved to the
// higher level package, but it is a bit tricky to separate the generation.
func (id Language) Canonicalize() (Language, AliasType) {
return normLang(id)
}
// normLang returns the mapped langID of id according to mapping m.
func normLang(id Language) (Language, AliasType) {
k := sort.Search(len(AliasMap), func(i int) bool {
return AliasMap[i].From >= uint16(id)
})
if k < len(AliasMap) && AliasMap[k].From == uint16(id) {
return Language(AliasMap[k].To), AliasTypes[k]
}
return id, AliasTypeUnknown
}
// getLangISO2 returns the langID for the given 2-letter ISO language code
// or unknownLang if this does not exist.
func getLangISO2(s []byte) (Language, error) {
if !tag.FixCase("zz", s) {
return 0, ErrSyntax
}
if i := lang.Index(s); i != -1 && lang.Elem(i)[3] != 0 {
return Language(i), nil
}
return 0, NewValueError(s)
}
const base = 'z' - 'a' + 1
func strToInt(s []byte) uint {
v := uint(0)
for i := 0; i < len(s); i++ {
v *= base
v += uint(s[i] - 'a')
}
return v
}
// converts the given integer to the original ASCII string passed to strToInt.
// len(s) must match the number of characters obtained.
func intToStr(v uint, s []byte) {
for i := len(s) - 1; i >= 0; i-- {
s[i] = byte(v%base) + 'a'
v /= base
}
}
// getLangISO3 returns the langID for the given 3-letter ISO language code
// or unknownLang if this does not exist.
func getLangISO3(s []byte) (Language, error) {
if tag.FixCase("und", s) {
// first try to match canonical 3-letter entries
for i := lang.Index(s[:2]); i != -1; i = lang.Next(s[:2], i) {
if e := lang.Elem(i); e[3] == 0 && e[2] == s[2] {
// We treat "und" as special and always translate it to "unspecified".
// Note that ZZ and Zzzz are private use and are not treated as
// unspecified by default.
id := Language(i)
if id == nonCanonicalUnd {
return 0, nil
}
return id, nil
}
}
if i := altLangISO3.Index(s); i != -1 {
return Language(altLangIndex[altLangISO3.Elem(i)[3]]), nil
}
n := strToInt(s)
if langNoIndex[n/8]&(1<<(n%8)) != 0 {
return Language(n) + langNoIndexOffset, nil
}
// Check for non-canonical uses of ISO3.
for i := lang.Index(s[:1]); i != -1; i = lang.Next(s[:1], i) {
if e := lang.Elem(i); e[2] == s[1] && e[3] == s[2] {
return Language(i), nil
}
}
return 0, NewValueError(s)
}
return 0, ErrSyntax
}
// StringToBuf writes the string to b and returns the number of bytes
// written. cap(b) must be >= 3.
func (id Language) StringToBuf(b []byte) int {
if id >= langNoIndexOffset {
intToStr(uint(id)-langNoIndexOffset, b[:3])
return 3
} else if id == 0 {
return copy(b, "und")
}
l := lang[id<<2:]
if l[3] == 0 {
return copy(b, l[:3])
}
return copy(b, l[:2])
}
// String returns the BCP 47 representation of the langID.
// Use b as variable name, instead of id, to ensure the variable
// used is consistent with that of Base in which this type is embedded.
func (b Language) String() string {
if b == 0 {
return "und"
} else if b >= langNoIndexOffset {
b -= langNoIndexOffset
buf := [3]byte{}
intToStr(uint(b), buf[:])
return string(buf[:])
}
l := lang.Elem(int(b))
if l[3] == 0 {
return l[:3]
}
return l[:2]
}
// ISO3 returns the ISO 639-3 language code.
func (b Language) ISO3() string {
if b == 0 || b >= langNoIndexOffset {
return b.String()
}
l := lang.Elem(int(b))
if l[3] == 0 {
return l[:3]
} else if l[2] == 0 {
return altLangISO3.Elem(int(l[3]))[:3]
}
// This allocation will only happen for 3-letter ISO codes
// that are non-canonical BCP 47 language identifiers.
return l[0:1] + l[2:4]
}
// IsPrivateUse reports whether this language code is reserved for private use.
func (b Language) IsPrivateUse() bool {
return langPrivateStart <= b && b <= langPrivateEnd
}
// SuppressScript returns the script marked as SuppressScript in the IANA
// language tag repository, or 0 if there is no such script.
func (b Language) SuppressScript() Script {
if b < langNoIndexOffset {
return Script(suppressScript[b])
}
return 0
}
type Region uint16
// getRegionID returns the region id for s if s is a valid 2-letter region code
// or unknownRegion.
func getRegionID(s []byte) (Region, error) {
if len(s) == 3 {
if isAlpha(s[0]) {
return getRegionISO3(s)
}
if i, err := strconv.ParseUint(string(s), 10, 10); err == nil {
return getRegionM49(int(i))
}
}
return getRegionISO2(s)
}
// getRegionISO2 returns the regionID for the given 2-letter ISO country code
// or unknownRegion if this does not exist.
func getRegionISO2(s []byte) (Region, error) {
i, err := findIndex(regionISO, s, "ZZ")
if err != nil {
return 0, err
}
return Region(i) + isoRegionOffset, nil
}
// getRegionISO3 returns the regionID for the given 3-letter ISO country code
// or unknownRegion if this does not exist.
func getRegionISO3(s []byte) (Region, error) {
if tag.FixCase("ZZZ", s) {
for i := regionISO.Index(s[:1]); i != -1; i = regionISO.Next(s[:1], i) {
if e := regionISO.Elem(i); e[2] == s[1] && e[3] == s[2] {
return Region(i) + isoRegionOffset, nil
}
}
for i := 0; i < len(altRegionISO3); i += 3 {
if tag.Compare(altRegionISO3[i:i+3], s) == 0 {
return Region(altRegionIDs[i/3]), nil
}
}
return 0, NewValueError(s)
}
return 0, ErrSyntax
}
func getRegionM49(n int) (Region, error) {
if 0 < n && n <= 999 {
const (
searchBits = 7
regionBits = 9
regionMask = 1<<regionBits - 1
)
idx := n >> searchBits
buf := fromM49[m49Index[idx]:m49Index[idx+1]]
val := uint16(n) << regionBits // we rely on bits shifting out
i := sort.Search(len(buf), func(i int) bool {
return buf[i] >= val
})
if r := fromM49[int(m49Index[idx])+i]; r&^regionMask == val {
return Region(r & regionMask), nil
}
}
var e ValueError
fmt.Fprint(bytes.NewBuffer([]byte(e.v[:])), n)
return 0, e
}
// normRegion returns a region if r is deprecated or 0 otherwise.
// TODO: consider supporting BYS (-> BLR), CSK (-> 200 or CZ), PHI (-> PHL) and AFI (-> DJ).
// TODO: consider mapping split up regions to new most populous one (like CLDR).
func normRegion(r Region) Region {
m := regionOldMap
k := sort.Search(len(m), func(i int) bool {
return m[i].From >= uint16(r)
})
if k < len(m) && m[k].From == uint16(r) {
return Region(m[k].To)
}
return 0
}
const (
iso3166UserAssigned = 1 << iota
ccTLD
bcp47Region
)
func (r Region) typ() byte {
return regionTypes[r]
}
// String returns the BCP 47 representation for the region.
// It returns "ZZ" for an unspecified region.
func (r Region) String() string {
if r < isoRegionOffset {
if r == 0 {
return "ZZ"
}
return fmt.Sprintf("%03d", r.M49())
}
r -= isoRegionOffset
return regionISO.Elem(int(r))[:2]
}
// ISO3 returns the 3-letter ISO code of r.
// Note that not all regions have a 3-letter ISO code.
// In such cases this method returns "ZZZ".
func (r Region) ISO3() string {
if r < isoRegionOffset {
return "ZZZ"
}
r -= isoRegionOffset
reg := regionISO.Elem(int(r))
switch reg[2] {
case 0:
return altRegionISO3[reg[3]:][:3]
case ' ':
return "ZZZ"
}
return reg[0:1] + reg[2:4]
}
// M49 returns the UN M.49 encoding of r, or 0 if this encoding
// is not defined for r.
func (r Region) M49() int {
return int(m49[r])
}
// IsPrivateUse reports whether r has the ISO 3166 User-assigned status. This
// may include private-use tags that are assigned by CLDR and used in this
// implementation. So IsPrivateUse and IsCountry can be simultaneously true.
func (r Region) IsPrivateUse() bool {
return r.typ()&iso3166UserAssigned != 0
}
type Script uint16
// getScriptID returns the script id for string s. It assumes that s
// is of the format [A-Z][a-z]{3}.
func getScriptID(idx tag.Index, s []byte) (Script, error) {
i, err := findIndex(idx, s, "Zzzz")
return Script(i), err
}
// String returns the script code in title case.
// It returns "Zzzz" for an unspecified script.
func (s Script) String() string {
if s == 0 {
return "Zzzz"
}
return script.Elem(int(s))
}
// IsPrivateUse reports whether this script code is reserved for private use.
func (s Script) IsPrivateUse() bool {
return _Qaaa <= s && s <= _Qabx
}
const (
maxAltTaglen = len("en-US-POSIX")
maxLen = maxAltTaglen
)
var (
// grandfatheredMap holds a mapping from legacy and grandfathered tags to
// their base language or index to more elaborate tag.
grandfatheredMap = map[[maxLen]byte]int16{
[maxLen]byte{'a', 'r', 't', '-', 'l', 'o', 'j', 'b', 'a', 'n'}: _jbo, // art-lojban
[maxLen]byte{'i', '-', 'a', 'm', 'i'}: _ami, // i-ami
[maxLen]byte{'i', '-', 'b', 'n', 'n'}: _bnn, // i-bnn
[maxLen]byte{'i', '-', 'h', 'a', 'k'}: _hak, // i-hak
[maxLen]byte{'i', '-', 'k', 'l', 'i', 'n', 'g', 'o', 'n'}: _tlh, // i-klingon
[maxLen]byte{'i', '-', 'l', 'u', 'x'}: _lb, // i-lux
[maxLen]byte{'i', '-', 'n', 'a', 'v', 'a', 'j', 'o'}: _nv, // i-navajo
[maxLen]byte{'i', '-', 'p', 'w', 'n'}: _pwn, // i-pwn
[maxLen]byte{'i', '-', 't', 'a', 'o'}: _tao, // i-tao
[maxLen]byte{'i', '-', 't', 'a', 'y'}: _tay, // i-tay
[maxLen]byte{'i', '-', 't', 's', 'u'}: _tsu, // i-tsu
[maxLen]byte{'n', 'o', '-', 'b', 'o', 'k'}: _nb, // no-bok
[maxLen]byte{'n', 'o', '-', 'n', 'y', 'n'}: _nn, // no-nyn
[maxLen]byte{'s', 'g', 'n', '-', 'b', 'e', '-', 'f', 'r'}: _sfb, // sgn-BE-FR
[maxLen]byte{'s', 'g', 'n', '-', 'b', 'e', '-', 'n', 'l'}: _vgt, // sgn-BE-NL
[maxLen]byte{'s', 'g', 'n', '-', 'c', 'h', '-', 'd', 'e'}: _sgg, // sgn-CH-DE
[maxLen]byte{'z', 'h', '-', 'g', 'u', 'o', 'y', 'u'}: _cmn, // zh-guoyu
[maxLen]byte{'z', 'h', '-', 'h', 'a', 'k', 'k', 'a'}: _hak, // zh-hakka
[maxLen]byte{'z', 'h', '-', 'm', 'i', 'n', '-', 'n', 'a', 'n'}: _nan, // zh-min-nan
[maxLen]byte{'z', 'h', '-', 'x', 'i', 'a', 'n', 'g'}: _hsn, // zh-xiang
// Grandfathered tags with no modern replacement will be converted as
// follows:
[maxLen]byte{'c', 'e', 'l', '-', 'g', 'a', 'u', 'l', 'i', 's', 'h'}: -1, // cel-gaulish
[maxLen]byte{'e', 'n', '-', 'g', 'b', '-', 'o', 'e', 'd'}: -2, // en-GB-oed
[maxLen]byte{'i', '-', 'd', 'e', 'f', 'a', 'u', 'l', 't'}: -3, // i-default
[maxLen]byte{'i', '-', 'e', 'n', 'o', 'c', 'h', 'i', 'a', 'n'}: -4, // i-enochian
[maxLen]byte{'i', '-', 'm', 'i', 'n', 'g', 'o'}: -5, // i-mingo
[maxLen]byte{'z', 'h', '-', 'm', 'i', 'n'}: -6, // zh-min
// CLDR-specific tag.
[maxLen]byte{'r', 'o', 'o', 't'}: 0, // root
[maxLen]byte{'e', 'n', '-', 'u', 's', '-', 'p', 'o', 's', 'i', 'x'}: -7, // en_US_POSIX"
}
altTagIndex = [...]uint8{0, 17, 31, 45, 61, 74, 86, 102}
altTags = "xtg-x-cel-gaulishen-GB-oxendicten-x-i-defaultund-x-i-enochiansee-x-i-mingonan-x-zh-minen-US-u-va-posix"
)
func grandfathered(s [maxAltTaglen]byte) (t Tag, ok bool) {
if v, ok := grandfatheredMap[s]; ok {
if v < 0 {
return Make(altTags[altTagIndex[-v-1]:altTagIndex[-v]]), true
}
t.LangID = Language(v)
return t, true
}
return t, false
}

226
vendor/golang.org/x/text/internal/language/match.go generated vendored Normal file
View File

@ -0,0 +1,226 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import "errors"
type scriptRegionFlags uint8
const (
isList = 1 << iota
scriptInFrom
regionInFrom
)
func (t *Tag) setUndefinedLang(id Language) {
if t.LangID == 0 {
t.LangID = id
}
}
func (t *Tag) setUndefinedScript(id Script) {
if t.ScriptID == 0 {
t.ScriptID = id
}
}
func (t *Tag) setUndefinedRegion(id Region) {
if t.RegionID == 0 || t.RegionID.Contains(id) {
t.RegionID = id
}
}
// ErrMissingLikelyTagsData indicates no information was available
// to compute likely values of missing tags.
var ErrMissingLikelyTagsData = errors.New("missing likely tags data")
// addLikelySubtags sets subtags to their most likely value, given the locale.
// In most cases this means setting fields for unknown values, but in some
// cases it may alter a value. It returns an ErrMissingLikelyTagsData error
// if the given locale cannot be expanded.
func (t Tag) addLikelySubtags() (Tag, error) {
id, err := addTags(t)
if err != nil {
return t, err
} else if id.equalTags(t) {
return t, nil
}
id.RemakeString()
return id, nil
}
// specializeRegion attempts to specialize a group region.
func specializeRegion(t *Tag) bool {
if i := regionInclusion[t.RegionID]; i < nRegionGroups {
x := likelyRegionGroup[i]
if Language(x.lang) == t.LangID && Script(x.script) == t.ScriptID {
t.RegionID = Region(x.region)
}
return true
}
return false
}
// Maximize returns a new tag with missing tags filled in.
func (t Tag) Maximize() (Tag, error) {
return addTags(t)
}
func addTags(t Tag) (Tag, error) {
// We leave private use identifiers alone.
if t.IsPrivateUse() {
return t, nil
}
if t.ScriptID != 0 && t.RegionID != 0 {
if t.LangID != 0 {
// already fully specified
specializeRegion(&t)
return t, nil
}
// Search matches for und-script-region. Note that for these cases
// region will never be a group so there is no need to check for this.
list := likelyRegion[t.RegionID : t.RegionID+1]
if x := list[0]; x.flags&isList != 0 {
list = likelyRegionList[x.lang : x.lang+uint16(x.script)]
}
for _, x := range list {
// Deviating from the spec. See match_test.go for details.
if Script(x.script) == t.ScriptID {
t.setUndefinedLang(Language(x.lang))
return t, nil
}
}
}
if t.LangID != 0 {
// Search matches for lang-script and lang-region, where lang != und.
if t.LangID < langNoIndexOffset {
x := likelyLang[t.LangID]
if x.flags&isList != 0 {
list := likelyLangList[x.region : x.region+uint16(x.script)]
if t.ScriptID != 0 {
for _, x := range list {
if Script(x.script) == t.ScriptID && x.flags&scriptInFrom != 0 {
t.setUndefinedRegion(Region(x.region))
return t, nil
}
}
} else if t.RegionID != 0 {
count := 0
goodScript := true
tt := t
for _, x := range list {
// We visit all entries for which the script was not
// defined, including the ones where the region was not
// defined. This allows for proper disambiguation within
// regions.
if x.flags&scriptInFrom == 0 && t.RegionID.Contains(Region(x.region)) {
tt.RegionID = Region(x.region)
tt.setUndefinedScript(Script(x.script))
goodScript = goodScript && tt.ScriptID == Script(x.script)
count++
}
}
if count == 1 {
return tt, nil
}
// Even if we fail to find a unique Region, we might have
// an unambiguous script.
if goodScript {
t.ScriptID = tt.ScriptID
}
}
}
}
} else {
// Search matches for und-script.
if t.ScriptID != 0 {
x := likelyScript[t.ScriptID]
if x.region != 0 {
t.setUndefinedRegion(Region(x.region))
t.setUndefinedLang(Language(x.lang))
return t, nil
}
}
// Search matches for und-region. If und-script-region exists, it would
// have been found earlier.
if t.RegionID != 0 {
if i := regionInclusion[t.RegionID]; i < nRegionGroups {
x := likelyRegionGroup[i]
if x.region != 0 {
t.setUndefinedLang(Language(x.lang))
t.setUndefinedScript(Script(x.script))
t.RegionID = Region(x.region)
}
} else {
x := likelyRegion[t.RegionID]
if x.flags&isList != 0 {
x = likelyRegionList[x.lang]
}
if x.script != 0 && x.flags != scriptInFrom {
t.setUndefinedLang(Language(x.lang))
t.setUndefinedScript(Script(x.script))
return t, nil
}
}
}
}
// Search matches for lang.
if t.LangID < langNoIndexOffset {
x := likelyLang[t.LangID]
if x.flags&isList != 0 {
x = likelyLangList[x.region]
}
if x.region != 0 {
t.setUndefinedScript(Script(x.script))
t.setUndefinedRegion(Region(x.region))
}
specializeRegion(&t)
if t.LangID == 0 {
t.LangID = _en // default language
}
return t, nil
}
return t, ErrMissingLikelyTagsData
}
func (t *Tag) setTagsFrom(id Tag) {
t.LangID = id.LangID
t.ScriptID = id.ScriptID
t.RegionID = id.RegionID
}
// minimize removes the region or script subtags from t such that
// t.addLikelySubtags() == t.minimize().addLikelySubtags().
func (t Tag) minimize() (Tag, error) {
t, err := minimizeTags(t)
if err != nil {
return t, err
}
t.RemakeString()
return t, nil
}
// minimizeTags mimics the behavior of the ICU 51 C implementation.
func minimizeTags(t Tag) (Tag, error) {
if t.equalTags(Und) {
return t, nil
}
max, err := addTags(t)
if err != nil {
return t, err
}
for _, id := range [...]Tag{
{LangID: t.LangID},
{LangID: t.LangID, RegionID: t.RegionID},
{LangID: t.LangID, ScriptID: t.ScriptID},
} {
if x, err := addTags(id); err == nil && max.equalTags(x) {
t.setTagsFrom(id)
break
}
}
return t, nil
}

608
vendor/golang.org/x/text/internal/language/parse.go generated vendored Normal file
View File

@ -0,0 +1,608 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import (
"bytes"
"errors"
"fmt"
"sort"
"golang.org/x/text/internal/tag"
)
// isAlpha returns true if the byte is not a digit.
// b must be an ASCII letter or digit.
func isAlpha(b byte) bool {
return b > '9'
}
// isAlphaNum returns true if the string contains only ASCII letters or digits.
func isAlphaNum(s []byte) bool {
for _, c := range s {
if !('a' <= c && c <= 'z' || 'A' <= c && c <= 'Z' || '0' <= c && c <= '9') {
return false
}
}
return true
}
// ErrSyntax is returned by any of the parsing functions when the
// input is not well-formed, according to BCP 47.
// TODO: return the position at which the syntax error occurred?
var ErrSyntax = errors.New("language: tag is not well-formed")
// ErrDuplicateKey is returned when a tag contains the same key twice with
// different values in the -u section.
var ErrDuplicateKey = errors.New("language: different values for same key in -u extension")
// ValueError is returned by any of the parsing functions when the
// input is well-formed but the respective subtag is not recognized
// as a valid value.
type ValueError struct {
v [8]byte
}
// NewValueError creates a new ValueError.
func NewValueError(tag []byte) ValueError {
var e ValueError
copy(e.v[:], tag)
return e
}
func (e ValueError) tag() []byte {
n := bytes.IndexByte(e.v[:], 0)
if n == -1 {
n = 8
}
return e.v[:n]
}
// Error implements the error interface.
func (e ValueError) Error() string {
return fmt.Sprintf("language: subtag %q is well-formed but unknown", e.tag())
}
// Subtag returns the subtag for which the error occurred.
func (e ValueError) Subtag() string {
return string(e.tag())
}
// scanner is used to scan BCP 47 tokens, which are separated by _ or -.
type scanner struct {
b []byte
bytes [max99thPercentileSize]byte
token []byte
start int // start position of the current token
end int // end position of the current token
next int // next point for scan
err error
done bool
}
func makeScannerString(s string) scanner {
scan := scanner{}
if len(s) <= len(scan.bytes) {
scan.b = scan.bytes[:copy(scan.bytes[:], s)]
} else {
scan.b = []byte(s)
}
scan.init()
return scan
}
// makeScanner returns a scanner using b as the input buffer.
// b is not copied and may be modified by the scanner routines.
func makeScanner(b []byte) scanner {
scan := scanner{b: b}
scan.init()
return scan
}
func (s *scanner) init() {
for i, c := range s.b {
if c == '_' {
s.b[i] = '-'
}
}
s.scan()
}
// restToLower converts the string between start and end to lower case.
func (s *scanner) toLower(start, end int) {
for i := start; i < end; i++ {
c := s.b[i]
if 'A' <= c && c <= 'Z' {
s.b[i] += 'a' - 'A'
}
}
}
func (s *scanner) setError(e error) {
if s.err == nil || (e == ErrSyntax && s.err != ErrSyntax) {
s.err = e
}
}
// resizeRange shrinks or grows the array at position oldStart such that
// a new string of size newSize can fit between oldStart and oldEnd.
// Sets the scan point to after the resized range.
func (s *scanner) resizeRange(oldStart, oldEnd, newSize int) {
s.start = oldStart
if end := oldStart + newSize; end != oldEnd {
diff := end - oldEnd
var b []byte
if n := len(s.b) + diff; n > cap(s.b) {
b = make([]byte, n)
copy(b, s.b[:oldStart])
} else {
b = s.b[:n]
}
copy(b[end:], s.b[oldEnd:])
s.b = b
s.next = end + (s.next - s.end)
s.end = end
}
}
// replace replaces the current token with repl.
func (s *scanner) replace(repl string) {
s.resizeRange(s.start, s.end, len(repl))
copy(s.b[s.start:], repl)
}
// gobble removes the current token from the input.
// Caller must call scan after calling gobble.
func (s *scanner) gobble(e error) {
s.setError(e)
if s.start == 0 {
s.b = s.b[:+copy(s.b, s.b[s.next:])]
s.end = 0
} else {
s.b = s.b[:s.start-1+copy(s.b[s.start-1:], s.b[s.end:])]
s.end = s.start - 1
}
s.next = s.start
}
// deleteRange removes the given range from s.b before the current token.
func (s *scanner) deleteRange(start, end int) {
s.b = s.b[:start+copy(s.b[start:], s.b[end:])]
diff := end - start
s.next -= diff
s.start -= diff
s.end -= diff
}
// scan parses the next token of a BCP 47 string. Tokens that are larger
// than 8 characters or include non-alphanumeric characters result in an error
// and are gobbled and removed from the output.
// It returns the end position of the last token consumed.
func (s *scanner) scan() (end int) {
end = s.end
s.token = nil
for s.start = s.next; s.next < len(s.b); {
i := bytes.IndexByte(s.b[s.next:], '-')
if i == -1 {
s.end = len(s.b)
s.next = len(s.b)
i = s.end - s.start
} else {
s.end = s.next + i
s.next = s.end + 1
}
token := s.b[s.start:s.end]
if i < 1 || i > 8 || !isAlphaNum(token) {
s.gobble(ErrSyntax)
continue
}
s.token = token
return end
}
if n := len(s.b); n > 0 && s.b[n-1] == '-' {
s.setError(ErrSyntax)
s.b = s.b[:len(s.b)-1]
}
s.done = true
return end
}
// acceptMinSize parses multiple tokens of the given size or greater.
// It returns the end position of the last token consumed.
func (s *scanner) acceptMinSize(min int) (end int) {
end = s.end
s.scan()
for ; len(s.token) >= min; s.scan() {
end = s.end
}
return end
}
// Parse parses the given BCP 47 string and returns a valid Tag. If parsing
// failed it returns an error and any part of the tag that could be parsed.
// If parsing succeeded but an unknown value was found, it returns
// ValueError. The Tag returned in this case is just stripped of the unknown
// value. All other values are preserved. It accepts tags in the BCP 47 format
// and extensions to this standard defined in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
func Parse(s string) (t Tag, err error) {
// TODO: consider supporting old-style locale key-value pairs.
if s == "" {
return Und, ErrSyntax
}
defer func() {
if recover() != nil {
t = Und
err = ErrSyntax
return
}
}()
if len(s) <= maxAltTaglen {
b := [maxAltTaglen]byte{}
for i, c := range s {
// Generating invalid UTF-8 is okay as it won't match.
if 'A' <= c && c <= 'Z' {
c += 'a' - 'A'
} else if c == '_' {
c = '-'
}
b[i] = byte(c)
}
if t, ok := grandfathered(b); ok {
return t, nil
}
}
scan := makeScannerString(s)
return parse(&scan, s)
}
func parse(scan *scanner, s string) (t Tag, err error) {
t = Und
var end int
if n := len(scan.token); n <= 1 {
scan.toLower(0, len(scan.b))
if n == 0 || scan.token[0] != 'x' {
return t, ErrSyntax
}
end = parseExtensions(scan)
} else if n >= 4 {
return Und, ErrSyntax
} else { // the usual case
t, end = parseTag(scan, true)
if n := len(scan.token); n == 1 {
t.pExt = uint16(end)
end = parseExtensions(scan)
} else if end < len(scan.b) {
scan.setError(ErrSyntax)
scan.b = scan.b[:end]
}
}
if int(t.pVariant) < len(scan.b) {
if end < len(s) {
s = s[:end]
}
if len(s) > 0 && tag.Compare(s, scan.b) == 0 {
t.str = s
} else {
t.str = string(scan.b)
}
} else {
t.pVariant, t.pExt = 0, 0
}
return t, scan.err
}
// parseTag parses language, script, region and variants.
// It returns a Tag and the end position in the input that was parsed.
// If doNorm is true, then <lang>-<extlang> will be normalized to <extlang>.
func parseTag(scan *scanner, doNorm bool) (t Tag, end int) {
var e error
// TODO: set an error if an unknown lang, script or region is encountered.
t.LangID, e = getLangID(scan.token)
scan.setError(e)
scan.replace(t.LangID.String())
langStart := scan.start
end = scan.scan()
for len(scan.token) == 3 && isAlpha(scan.token[0]) {
// From http://tools.ietf.org/html/bcp47, <lang>-<extlang> tags are equivalent
// to a tag of the form <extlang>.
if doNorm {
lang, e := getLangID(scan.token)
if lang != 0 {
t.LangID = lang
langStr := lang.String()
copy(scan.b[langStart:], langStr)
scan.b[langStart+len(langStr)] = '-'
scan.start = langStart + len(langStr) + 1
}
scan.gobble(e)
}
end = scan.scan()
}
if len(scan.token) == 4 && isAlpha(scan.token[0]) {
t.ScriptID, e = getScriptID(script, scan.token)
if t.ScriptID == 0 {
scan.gobble(e)
}
end = scan.scan()
}
if n := len(scan.token); n >= 2 && n <= 3 {
t.RegionID, e = getRegionID(scan.token)
if t.RegionID == 0 {
scan.gobble(e)
} else {
scan.replace(t.RegionID.String())
}
end = scan.scan()
}
scan.toLower(scan.start, len(scan.b))
t.pVariant = byte(end)
end = parseVariants(scan, end, t)
t.pExt = uint16(end)
return t, end
}
var separator = []byte{'-'}
// parseVariants scans tokens as long as each token is a valid variant string.
// Duplicate variants are removed.
func parseVariants(scan *scanner, end int, t Tag) int {
start := scan.start
varIDBuf := [4]uint8{}
variantBuf := [4][]byte{}
varID := varIDBuf[:0]
variant := variantBuf[:0]
last := -1
needSort := false
for ; len(scan.token) >= 4; scan.scan() {
// TODO: measure the impact of needing this conversion and redesign
// the data structure if there is an issue.
v, ok := variantIndex[string(scan.token)]
if !ok {
// unknown variant
// TODO: allow user-defined variants?
scan.gobble(NewValueError(scan.token))
continue
}
varID = append(varID, v)
variant = append(variant, scan.token)
if !needSort {
if last < int(v) {
last = int(v)
} else {
needSort = true
// There is no legal combinations of more than 7 variants
// (and this is by no means a useful sequence).
const maxVariants = 8
if len(varID) > maxVariants {
break
}
}
}
end = scan.end
}
if needSort {
sort.Sort(variantsSort{varID, variant})
k, l := 0, -1
for i, v := range varID {
w := int(v)
if l == w {
// Remove duplicates.
continue
}
varID[k] = varID[i]
variant[k] = variant[i]
k++
l = w
}
if str := bytes.Join(variant[:k], separator); len(str) == 0 {
end = start - 1
} else {
scan.resizeRange(start, end, len(str))
copy(scan.b[scan.start:], str)
end = scan.end
}
}
return end
}
type variantsSort struct {
i []uint8
v [][]byte
}
func (s variantsSort) Len() int {
return len(s.i)
}
func (s variantsSort) Swap(i, j int) {
s.i[i], s.i[j] = s.i[j], s.i[i]
s.v[i], s.v[j] = s.v[j], s.v[i]
}
func (s variantsSort) Less(i, j int) bool {
return s.i[i] < s.i[j]
}
type bytesSort struct {
b [][]byte
n int // first n bytes to compare
}
func (b bytesSort) Len() int {
return len(b.b)
}
func (b bytesSort) Swap(i, j int) {
b.b[i], b.b[j] = b.b[j], b.b[i]
}
func (b bytesSort) Less(i, j int) bool {
for k := 0; k < b.n; k++ {
if b.b[i][k] == b.b[j][k] {
continue
}
return b.b[i][k] < b.b[j][k]
}
return false
}
// parseExtensions parses and normalizes the extensions in the buffer.
// It returns the last position of scan.b that is part of any extension.
// It also trims scan.b to remove excess parts accordingly.
func parseExtensions(scan *scanner) int {
start := scan.start
exts := [][]byte{}
private := []byte{}
end := scan.end
for len(scan.token) == 1 {
extStart := scan.start
ext := scan.token[0]
end = parseExtension(scan)
extension := scan.b[extStart:end]
if len(extension) < 3 || (ext != 'x' && len(extension) < 4) {
scan.setError(ErrSyntax)
end = extStart
continue
} else if start == extStart && (ext == 'x' || scan.start == len(scan.b)) {
scan.b = scan.b[:end]
return end
} else if ext == 'x' {
private = extension
break
}
exts = append(exts, extension)
}
sort.Sort(bytesSort{exts, 1})
if len(private) > 0 {
exts = append(exts, private)
}
scan.b = scan.b[:start]
if len(exts) > 0 {
scan.b = append(scan.b, bytes.Join(exts, separator)...)
} else if start > 0 {
// Strip trailing '-'.
scan.b = scan.b[:start-1]
}
return end
}
// parseExtension parses a single extension and returns the position of
// the extension end.
func parseExtension(scan *scanner) int {
start, end := scan.start, scan.end
switch scan.token[0] {
case 'u': // https://www.ietf.org/rfc/rfc6067.txt
attrStart := end
scan.scan()
for last := []byte{}; len(scan.token) > 2; scan.scan() {
if bytes.Compare(scan.token, last) != -1 {
// Attributes are unsorted. Start over from scratch.
p := attrStart + 1
scan.next = p
attrs := [][]byte{}
for scan.scan(); len(scan.token) > 2; scan.scan() {
attrs = append(attrs, scan.token)
end = scan.end
}
sort.Sort(bytesSort{attrs, 3})
copy(scan.b[p:], bytes.Join(attrs, separator))
break
}
last = scan.token
end = scan.end
}
// Scan key-type sequences. A key is of length 2 and may be followed
// by 0 or more "type" subtags from 3 to the maximum of 8 letters.
var last, key []byte
for attrEnd := end; len(scan.token) == 2; last = key {
key = scan.token
end = scan.end
for scan.scan(); end < scan.end && len(scan.token) > 2; scan.scan() {
end = scan.end
}
// TODO: check key value validity
if bytes.Compare(key, last) != 1 || scan.err != nil {
// We have an invalid key or the keys are not sorted.
// Start scanning keys from scratch and reorder.
p := attrEnd + 1
scan.next = p
keys := [][]byte{}
for scan.scan(); len(scan.token) == 2; {
keyStart := scan.start
end = scan.end
for scan.scan(); end < scan.end && len(scan.token) > 2; scan.scan() {
end = scan.end
}
keys = append(keys, scan.b[keyStart:end])
}
sort.Stable(bytesSort{keys, 2})
if n := len(keys); n > 0 {
k := 0
for i := 1; i < n; i++ {
if !bytes.Equal(keys[k][:2], keys[i][:2]) {
k++
keys[k] = keys[i]
} else if !bytes.Equal(keys[k], keys[i]) {
scan.setError(ErrDuplicateKey)
}
}
keys = keys[:k+1]
}
reordered := bytes.Join(keys, separator)
if e := p + len(reordered); e < end {
scan.deleteRange(e, end)
end = e
}
copy(scan.b[p:], reordered)
break
}
}
case 't': // https://www.ietf.org/rfc/rfc6497.txt
scan.scan()
if n := len(scan.token); n >= 2 && n <= 3 && isAlpha(scan.token[1]) {
_, end = parseTag(scan, false)
scan.toLower(start, end)
}
for len(scan.token) == 2 && !isAlpha(scan.token[1]) {
end = scan.acceptMinSize(3)
}
case 'x':
end = scan.acceptMinSize(1)
default:
end = scan.acceptMinSize(2)
}
return end
}
// getExtension returns the name, body and end position of the extension.
func getExtension(s string, p int) (end int, ext string) {
if s[p] == '-' {
p++
}
if s[p] == 'x' {
return len(s), s[p:]
}
end = nextExtension(s, p)
return end, s[p:end]
}
// nextExtension finds the next extension within the string, searching
// for the -<char>- pattern from position p.
// In the fast majority of cases, language tags will have at most
// one extension and extensions tend to be small.
func nextExtension(s string, p int) int {
for n := len(s) - 3; p < n; {
if s[p] == '-' {
if s[p+2] == '-' {
return p
}
p += 3
} else {
p++
}
}
return len(s)
}

3494
vendor/golang.org/x/text/internal/language/tables.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

48
vendor/golang.org/x/text/internal/language/tags.go generated vendored Normal file
View File

@ -0,0 +1,48 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
// MustParse is like Parse, but panics if the given BCP 47 tag cannot be parsed.
// It simplifies safe initialization of Tag values.
func MustParse(s string) Tag {
t, err := Parse(s)
if err != nil {
panic(err)
}
return t
}
// MustParseBase is like ParseBase, but panics if the given base cannot be parsed.
// It simplifies safe initialization of Base values.
func MustParseBase(s string) Language {
b, err := ParseBase(s)
if err != nil {
panic(err)
}
return b
}
// MustParseScript is like ParseScript, but panics if the given script cannot be
// parsed. It simplifies safe initialization of Script values.
func MustParseScript(s string) Script {
scr, err := ParseScript(s)
if err != nil {
panic(err)
}
return scr
}
// MustParseRegion is like ParseRegion, but panics if the given region cannot be
// parsed. It simplifies safe initialization of Region values.
func MustParseRegion(s string) Region {
r, err := ParseRegion(s)
if err != nil {
panic(err)
}
return r
}
// Und is the root language.
var Und Tag

67
vendor/golang.org/x/text/internal/match.go generated vendored Normal file
View File

@ -0,0 +1,67 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package internal
// This file contains matchers that implement CLDR inheritance.
//
// See https://unicode.org/reports/tr35/#Locale_Inheritance.
//
// Some of the inheritance described in this document is already handled by
// the cldr package.
import (
"golang.org/x/text/language"
)
// TODO: consider if (some of the) matching algorithm needs to be public after
// getting some feel about what is generic and what is specific.
// NewInheritanceMatcher returns a matcher that matches based on the inheritance
// chain.
//
// The matcher uses canonicalization and the parent relationship to find a
// match. The resulting match will always be either Und or a language with the
// same language and script as the requested language. It will not match
// languages for which there is understood to be mutual or one-directional
// intelligibility.
//
// A Match will indicate an Exact match if the language matches after
// canonicalization and High if the matched tag is a parent.
func NewInheritanceMatcher(t []language.Tag) *InheritanceMatcher {
tags := &InheritanceMatcher{make(map[language.Tag]int)}
for i, tag := range t {
ct, err := language.All.Canonicalize(tag)
if err != nil {
ct = tag
}
tags.index[ct] = i
}
return tags
}
type InheritanceMatcher struct {
index map[language.Tag]int
}
func (m InheritanceMatcher) Match(want ...language.Tag) (language.Tag, int, language.Confidence) {
for _, t := range want {
ct, err := language.All.Canonicalize(t)
if err != nil {
ct = t
}
conf := language.Exact
for {
if index, ok := m.index[ct]; ok {
return ct, index, conf
}
if ct == language.Und {
break
}
ct = ct.Parent()
conf = language.High
}
}
return language.Und, 0, language.No
}

55
vendor/golang.org/x/text/internal/number/common.go generated vendored Normal file
View File

@ -0,0 +1,55 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
package number
import (
"unicode/utf8"
"golang.org/x/text/internal/language/compact"
)
// A system identifies a CLDR numbering system.
type system byte
type systemData struct {
id system
digitSize byte // number of UTF-8 bytes per digit
zero [utf8.UTFMax]byte // UTF-8 sequence of zero digit.
}
// A SymbolType identifies a symbol of a specific kind.
type SymbolType int
const (
SymDecimal SymbolType = iota
SymGroup
SymList
SymPercentSign
SymPlusSign
SymMinusSign
SymExponential
SymSuperscriptingExponent
SymPerMille
SymInfinity
SymNan
SymTimeSeparator
NumSymbolTypes
)
const hasNonLatnMask = 0x8000
// symOffset is an offset into altSymData if the bit indicated by hasNonLatnMask
// is not 0 (with this bit masked out), and an offset into symIndex otherwise.
//
// TODO: this type can be a byte again if we use an indirection into altsymData
// and introduce an alt -> offset slice (the length of this will be number of
// alternatives plus 1). This also allows getting rid of the compactTag field
// in altSymData. In total this will save about 1K.
type symOffset uint16
type altSymData struct {
compactTag compact.ID
symIndex symOffset
system system
}

500
vendor/golang.org/x/text/internal/number/decimal.go generated vendored Normal file
View File

@ -0,0 +1,500 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate stringer -type RoundingMode
package number
import (
"math"
"strconv"
)
// RoundingMode determines how a number is rounded to the desired precision.
type RoundingMode byte
const (
ToNearestEven RoundingMode = iota // towards the nearest integer, or towards an even number if equidistant.
ToNearestZero // towards the nearest integer, or towards zero if equidistant.
ToNearestAway // towards the nearest integer, or away from zero if equidistant.
ToPositiveInf // towards infinity
ToNegativeInf // towards negative infinity
ToZero // towards zero
AwayFromZero // away from zero
numModes
)
const maxIntDigits = 20
// A Decimal represents a floating point number in decimal format.
// Digits represents a number [0, 1.0), and the absolute value represented by
// Decimal is Digits * 10^Exp. Leading and trailing zeros may be omitted and Exp
// may point outside a valid position in Digits.
//
// Examples:
//
// Number Decimal
// 12345 Digits: [1, 2, 3, 4, 5], Exp: 5
// 12.345 Digits: [1, 2, 3, 4, 5], Exp: 2
// 12000 Digits: [1, 2], Exp: 5
// 12000.00 Digits: [1, 2], Exp: 5
// 0.00123 Digits: [1, 2, 3], Exp: -2
// 0 Digits: [], Exp: 0
type Decimal struct {
digits
buf [maxIntDigits]byte
}
type digits struct {
Digits []byte // mantissa digits, big-endian
Exp int32 // exponent
Neg bool
Inf bool // Takes precedence over Digits and Exp.
NaN bool // Takes precedence over Inf.
}
// Digits represents a floating point number represented in digits of the
// base in which a number is to be displayed. It is similar to Decimal, but
// keeps track of trailing fraction zeros and the comma placement for
// engineering notation. Digits must have at least one digit.
//
// Examples:
//
// Number Decimal
// decimal
// 12345 Digits: [1, 2, 3, 4, 5], Exp: 5 End: 5
// 12.345 Digits: [1, 2, 3, 4, 5], Exp: 2 End: 5
// 12000 Digits: [1, 2], Exp: 5 End: 5
// 12000.00 Digits: [1, 2], Exp: 5 End: 7
// 0.00123 Digits: [1, 2, 3], Exp: -2 End: 3
// 0 Digits: [], Exp: 0 End: 1
// scientific (actual exp is Exp - Comma)
// 0e0 Digits: [0], Exp: 1, End: 1, Comma: 1
// .0e0 Digits: [0], Exp: 0, End: 1, Comma: 0
// 0.0e0 Digits: [0], Exp: 1, End: 2, Comma: 1
// 1.23e4 Digits: [1, 2, 3], Exp: 5, End: 3, Comma: 1
// .123e5 Digits: [1, 2, 3], Exp: 5, End: 3, Comma: 0
// engineering
// 12.3e3 Digits: [1, 2, 3], Exp: 5, End: 3, Comma: 2
type Digits struct {
digits
// End indicates the end position of the number.
End int32 // For decimals Exp <= End. For scientific len(Digits) <= End.
// Comma is used for the comma position for scientific (always 0 or 1) and
// engineering notation (always 0, 1, 2, or 3).
Comma uint8
// IsScientific indicates whether this number is to be rendered as a
// scientific number.
IsScientific bool
}
func (d *Digits) NumFracDigits() int {
if d.Exp >= d.End {
return 0
}
return int(d.End - d.Exp)
}
// normalize returns a new Decimal with leading and trailing zeros removed.
func (d *Decimal) normalize() (n Decimal) {
n = *d
b := n.Digits
// Strip leading zeros. Resulting number of digits is significant digits.
for len(b) > 0 && b[0] == 0 {
b = b[1:]
n.Exp--
}
// Strip trailing zeros
for len(b) > 0 && b[len(b)-1] == 0 {
b = b[:len(b)-1]
}
if len(b) == 0 {
n.Exp = 0
}
n.Digits = b
return n
}
func (d *Decimal) clear() {
b := d.Digits
if b == nil {
b = d.buf[:0]
}
*d = Decimal{}
d.Digits = b[:0]
}
func (x *Decimal) String() string {
if x.NaN {
return "NaN"
}
var buf []byte
if x.Neg {
buf = append(buf, '-')
}
if x.Inf {
buf = append(buf, "Inf"...)
return string(buf)
}
switch {
case len(x.Digits) == 0:
buf = append(buf, '0')
case x.Exp <= 0:
// 0.00ddd
buf = append(buf, "0."...)
buf = appendZeros(buf, -int(x.Exp))
buf = appendDigits(buf, x.Digits)
case /* 0 < */ int(x.Exp) < len(x.Digits):
// dd.ddd
buf = appendDigits(buf, x.Digits[:x.Exp])
buf = append(buf, '.')
buf = appendDigits(buf, x.Digits[x.Exp:])
default: // len(x.Digits) <= x.Exp
// ddd00
buf = appendDigits(buf, x.Digits)
buf = appendZeros(buf, int(x.Exp)-len(x.Digits))
}
return string(buf)
}
func appendDigits(buf []byte, digits []byte) []byte {
for _, c := range digits {
buf = append(buf, c+'0')
}
return buf
}
// appendZeros appends n 0 digits to buf and returns buf.
func appendZeros(buf []byte, n int) []byte {
for ; n > 0; n-- {
buf = append(buf, '0')
}
return buf
}
func (d *digits) round(mode RoundingMode, n int) {
if n >= len(d.Digits) {
return
}
// Make rounding decision: The result mantissa is truncated ("rounded down")
// by default. Decide if we need to increment, or "round up", the (unsigned)
// mantissa.
inc := false
switch mode {
case ToNegativeInf:
inc = d.Neg
case ToPositiveInf:
inc = !d.Neg
case ToZero:
// nothing to do
case AwayFromZero:
inc = true
case ToNearestEven:
inc = d.Digits[n] > 5 || d.Digits[n] == 5 &&
(len(d.Digits) > n+1 || n == 0 || d.Digits[n-1]&1 != 0)
case ToNearestAway:
inc = d.Digits[n] >= 5
case ToNearestZero:
inc = d.Digits[n] > 5 || d.Digits[n] == 5 && len(d.Digits) > n+1
default:
panic("unreachable")
}
if inc {
d.roundUp(n)
} else {
d.roundDown(n)
}
}
// roundFloat rounds a floating point number.
func (r RoundingMode) roundFloat(x float64) float64 {
// Make rounding decision: The result mantissa is truncated ("rounded down")
// by default. Decide if we need to increment, or "round up", the (unsigned)
// mantissa.
abs := x
if x < 0 {
abs = -x
}
i, f := math.Modf(abs)
if f == 0.0 {
return x
}
inc := false
switch r {
case ToNegativeInf:
inc = x < 0
case ToPositiveInf:
inc = x >= 0
case ToZero:
// nothing to do
case AwayFromZero:
inc = true
case ToNearestEven:
// TODO: check overflow
inc = f > 0.5 || f == 0.5 && int64(i)&1 != 0
case ToNearestAway:
inc = f >= 0.5
case ToNearestZero:
inc = f > 0.5
default:
panic("unreachable")
}
if inc {
i += 1
}
if abs != x {
i = -i
}
return i
}
func (x *digits) roundUp(n int) {
if n < 0 || n >= len(x.Digits) {
return // nothing to do
}
// find first digit < 9
for n > 0 && x.Digits[n-1] >= 9 {
n--
}
if n == 0 {
// all digits are 9s => round up to 1 and update exponent
x.Digits[0] = 1 // ok since len(x.Digits) > n
x.Digits = x.Digits[:1]
x.Exp++
return
}
x.Digits[n-1]++
x.Digits = x.Digits[:n]
// x already trimmed
}
func (x *digits) roundDown(n int) {
if n < 0 || n >= len(x.Digits) {
return // nothing to do
}
x.Digits = x.Digits[:n]
trim(x)
}
// trim cuts off any trailing zeros from x's mantissa;
// they are meaningless for the value of x.
func trim(x *digits) {
i := len(x.Digits)
for i > 0 && x.Digits[i-1] == 0 {
i--
}
x.Digits = x.Digits[:i]
if i == 0 {
x.Exp = 0
}
}
// A Converter converts a number into decimals according to the given rounding
// criteria.
type Converter interface {
Convert(d *Decimal, r RoundingContext)
}
const (
signed = true
unsigned = false
)
// Convert converts the given number to the decimal representation using the
// supplied RoundingContext.
func (d *Decimal) Convert(r RoundingContext, number interface{}) {
switch f := number.(type) {
case Converter:
d.clear()
f.Convert(d, r)
case float32:
d.ConvertFloat(r, float64(f), 32)
case float64:
d.ConvertFloat(r, f, 64)
case int:
d.ConvertInt(r, signed, uint64(f))
case int8:
d.ConvertInt(r, signed, uint64(f))
case int16:
d.ConvertInt(r, signed, uint64(f))
case int32:
d.ConvertInt(r, signed, uint64(f))
case int64:
d.ConvertInt(r, signed, uint64(f))
case uint:
d.ConvertInt(r, unsigned, uint64(f))
case uint8:
d.ConvertInt(r, unsigned, uint64(f))
case uint16:
d.ConvertInt(r, unsigned, uint64(f))
case uint32:
d.ConvertInt(r, unsigned, uint64(f))
case uint64:
d.ConvertInt(r, unsigned, f)
default:
d.NaN = true
// TODO:
// case string: if produced by strconv, allows for easy arbitrary pos.
// case reflect.Value:
// case big.Float
// case big.Int
// case big.Rat?
// catch underlyings using reflect or will this already be done by the
// message package?
}
}
// ConvertInt converts an integer to decimals.
func (d *Decimal) ConvertInt(r RoundingContext, signed bool, x uint64) {
if r.Increment > 0 {
// TODO: if uint64 is too large, fall back to float64
if signed {
d.ConvertFloat(r, float64(int64(x)), 64)
} else {
d.ConvertFloat(r, float64(x), 64)
}
return
}
d.clear()
if signed && int64(x) < 0 {
x = uint64(-int64(x))
d.Neg = true
}
d.fillIntDigits(x)
d.Exp = int32(len(d.Digits))
}
// ConvertFloat converts a floating point number to decimals.
func (d *Decimal) ConvertFloat(r RoundingContext, x float64, size int) {
d.clear()
if math.IsNaN(x) {
d.NaN = true
return
}
// Simple case: decimal notation
if r.Increment > 0 {
scale := int(r.IncrementScale)
mult := 1.0
if scale >= len(scales) {
mult = math.Pow(10, float64(scale))
} else {
mult = scales[scale]
}
// We multiply x instead of dividing inc as it gives less rounding
// issues.
x *= mult
x /= float64(r.Increment)
x = r.Mode.roundFloat(x)
x *= float64(r.Increment)
x /= mult
}
abs := x
if x < 0 {
d.Neg = true
abs = -x
}
if math.IsInf(abs, 1) {
d.Inf = true
return
}
// By default we get the exact decimal representation.
verb := byte('g')
prec := -1
// As the strconv API does not return the rounding accuracy, we can only
// round using ToNearestEven.
if r.Mode == ToNearestEven {
if n := r.RoundSignificantDigits(); n >= 0 {
prec = n
} else if n = r.RoundFractionDigits(); n >= 0 {
prec = n
verb = 'f'
}
} else {
// TODO: At this point strconv's rounding is imprecise to the point that
// it is not usable for this purpose.
// See https://github.com/golang/go/issues/21714
// If rounding is requested, we ask for a large number of digits and
// round from there to simulate rounding only once.
// Ideally we would have strconv export an AppendDigits that would take
// a rounding mode and/or return an accuracy. Something like this would
// work:
// AppendDigits(dst []byte, x float64, base, size, prec int) (digits []byte, exp, accuracy int)
hasPrec := r.RoundSignificantDigits() >= 0
hasScale := r.RoundFractionDigits() >= 0
if hasPrec || hasScale {
// prec is the number of mantissa bits plus some extra for safety.
// We need at least the number of mantissa bits as decimals to
// accurately represent the floating point without rounding, as each
// bit requires one more decimal to represent: 0.5, 0.25, 0.125, ...
prec = 60
}
}
b := strconv.AppendFloat(d.Digits[:0], abs, verb, prec, size)
i := 0
k := 0
beforeDot := 1
for i < len(b) {
if c := b[i]; '0' <= c && c <= '9' {
b[k] = c - '0'
k++
d.Exp += int32(beforeDot)
} else if c == '.' {
beforeDot = 0
d.Exp = int32(k)
} else {
break
}
i++
}
d.Digits = b[:k]
if i != len(b) {
i += len("e")
pSign := i
exp := 0
for i++; i < len(b); i++ {
exp *= 10
exp += int(b[i] - '0')
}
if b[pSign] == '-' {
exp = -exp
}
d.Exp = int32(exp) + 1
}
}
func (d *Decimal) fillIntDigits(x uint64) {
if cap(d.Digits) < maxIntDigits {
d.Digits = d.buf[:]
} else {
d.Digits = d.buf[:maxIntDigits]
}
i := 0
for ; x > 0; x /= 10 {
d.Digits[i] = byte(x % 10)
i++
}
d.Digits = d.Digits[:i]
for p := 0; p < i; p++ {
i--
d.Digits[p], d.Digits[i] = d.Digits[i], d.Digits[p]
}
}
var scales [70]float64
func init() {
x := 1.0
for i := range scales {
scales[i] = x
x *= 10
}
}

535
vendor/golang.org/x/text/internal/number/format.go generated vendored Normal file
View File

@ -0,0 +1,535 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package number
import (
"strconv"
"unicode/utf8"
"golang.org/x/text/language"
)
// TODO:
// - grouping of fractions
// - allow user-defined superscript notation (such as <sup>4</sup>)
// - same for non-breaking spaces, like &nbsp;
// A VisibleDigits computes digits, comma placement and trailing zeros as they
// will be shown to the user.
type VisibleDigits interface {
Digits(buf []byte, t language.Tag, scale int) Digits
// TODO: Do we also need to add the verb or pass a format.State?
}
// Formatting proceeds along the following lines:
// 0) Compose rounding information from format and context.
// 1) Convert a number into a Decimal.
// 2) Sanitize Decimal by adding trailing zeros, removing leading digits, and
// (non-increment) rounding. The Decimal that results from this is suitable
// for determining the plural form.
// 3) Render the Decimal in the localized form.
// Formatter contains all the information needed to render a number.
type Formatter struct {
Pattern
Info
}
func (f *Formatter) init(t language.Tag, index []uint8) {
f.Info = InfoFromTag(t)
f.Pattern = formats[index[tagToID(t)]]
}
// InitPattern initializes a Formatter for the given Pattern.
func (f *Formatter) InitPattern(t language.Tag, pat *Pattern) {
f.Info = InfoFromTag(t)
f.Pattern = *pat
}
// InitDecimal initializes a Formatter using the default Pattern for the given
// language.
func (f *Formatter) InitDecimal(t language.Tag) {
f.init(t, tagToDecimal)
}
// InitScientific initializes a Formatter using the default Pattern for the
// given language.
func (f *Formatter) InitScientific(t language.Tag) {
f.init(t, tagToScientific)
f.Pattern.MinFractionDigits = 0
f.Pattern.MaxFractionDigits = -1
}
// InitEngineering initializes a Formatter using the default Pattern for the
// given language.
func (f *Formatter) InitEngineering(t language.Tag) {
f.init(t, tagToScientific)
f.Pattern.MinFractionDigits = 0
f.Pattern.MaxFractionDigits = -1
f.Pattern.MaxIntegerDigits = 3
f.Pattern.MinIntegerDigits = 1
}
// InitPercent initializes a Formatter using the default Pattern for the given
// language.
func (f *Formatter) InitPercent(t language.Tag) {
f.init(t, tagToPercent)
}
// InitPerMille initializes a Formatter using the default Pattern for the given
// language.
func (f *Formatter) InitPerMille(t language.Tag) {
f.init(t, tagToPercent)
f.Pattern.DigitShift = 3
}
func (f *Formatter) Append(dst []byte, x interface{}) []byte {
var d Decimal
r := f.RoundingContext
d.Convert(r, x)
return f.Render(dst, FormatDigits(&d, r))
}
func FormatDigits(d *Decimal, r RoundingContext) Digits {
if r.isScientific() {
return scientificVisibleDigits(r, d)
}
return decimalVisibleDigits(r, d)
}
func (f *Formatter) Format(dst []byte, d *Decimal) []byte {
return f.Render(dst, FormatDigits(d, f.RoundingContext))
}
func (f *Formatter) Render(dst []byte, d Digits) []byte {
var result []byte
var postPrefix, preSuffix int
if d.IsScientific {
result, postPrefix, preSuffix = appendScientific(dst, f, &d)
} else {
result, postPrefix, preSuffix = appendDecimal(dst, f, &d)
}
if f.PadRune == 0 {
return result
}
width := int(f.FormatWidth)
if count := utf8.RuneCount(result); count < width {
insertPos := 0
switch f.Flags & PadMask {
case PadAfterPrefix:
insertPos = postPrefix
case PadBeforeSuffix:
insertPos = preSuffix
case PadAfterSuffix:
insertPos = len(result)
}
num := width - count
pad := [utf8.UTFMax]byte{' '}
sz := 1
if r := f.PadRune; r != 0 {
sz = utf8.EncodeRune(pad[:], r)
}
extra := sz * num
if n := len(result) + extra; n < cap(result) {
result = result[:n]
copy(result[insertPos+extra:], result[insertPos:])
} else {
buf := make([]byte, n)
copy(buf, result[:insertPos])
copy(buf[insertPos+extra:], result[insertPos:])
result = buf
}
for ; num > 0; num-- {
insertPos += copy(result[insertPos:], pad[:sz])
}
}
return result
}
// decimalVisibleDigits converts d according to the RoundingContext. Note that
// the exponent may change as a result of this operation.
func decimalVisibleDigits(r RoundingContext, d *Decimal) Digits {
if d.NaN || d.Inf {
return Digits{digits: digits{Neg: d.Neg, NaN: d.NaN, Inf: d.Inf}}
}
n := Digits{digits: d.normalize().digits}
exp := n.Exp
exp += int32(r.DigitShift)
// Cap integer digits. Remove *most-significant* digits.
if r.MaxIntegerDigits > 0 {
if p := int(exp) - int(r.MaxIntegerDigits); p > 0 {
if p > len(n.Digits) {
p = len(n.Digits)
}
if n.Digits = n.Digits[p:]; len(n.Digits) == 0 {
exp = 0
} else {
exp -= int32(p)
}
// Strip leading zeros.
for len(n.Digits) > 0 && n.Digits[0] == 0 {
n.Digits = n.Digits[1:]
exp--
}
}
}
// Rounding if not already done by Convert.
p := len(n.Digits)
if maxSig := int(r.MaxSignificantDigits); maxSig > 0 {
p = maxSig
}
if maxFrac := int(r.MaxFractionDigits); maxFrac >= 0 {
if cap := int(exp) + maxFrac; cap < p {
p = int(exp) + maxFrac
}
if p < 0 {
p = 0
}
}
n.round(r.Mode, p)
// set End (trailing zeros)
n.End = int32(len(n.Digits))
if n.End == 0 {
exp = 0
if r.MinFractionDigits > 0 {
n.End = int32(r.MinFractionDigits)
}
if p := int32(r.MinSignificantDigits) - 1; p > n.End {
n.End = p
}
} else {
if end := exp + int32(r.MinFractionDigits); end > n.End {
n.End = end
}
if n.End < int32(r.MinSignificantDigits) {
n.End = int32(r.MinSignificantDigits)
}
}
n.Exp = exp
return n
}
// appendDecimal appends a formatted number to dst. It returns two possible
// insertion points for padding.
func appendDecimal(dst []byte, f *Formatter, n *Digits) (b []byte, postPre, preSuf int) {
if dst, ok := f.renderSpecial(dst, n); ok {
return dst, 0, len(dst)
}
digits := n.Digits
exp := n.Exp
// Split in integer and fraction part.
var intDigits, fracDigits []byte
numInt := 0
numFrac := int(n.End - n.Exp)
if exp > 0 {
numInt = int(exp)
if int(exp) >= len(digits) { // ddddd | ddddd00
intDigits = digits
} else { // ddd.dd
intDigits = digits[:exp]
fracDigits = digits[exp:]
}
} else {
fracDigits = digits
}
neg := n.Neg
affix, suffix := f.getAffixes(neg)
dst = appendAffix(dst, f, affix, neg)
savedLen := len(dst)
minInt := int(f.MinIntegerDigits)
if minInt == 0 && f.MinSignificantDigits > 0 {
minInt = 1
}
// add leading zeros
for i := minInt; i > numInt; i-- {
dst = f.AppendDigit(dst, 0)
if f.needsSep(i) {
dst = append(dst, f.Symbol(SymGroup)...)
}
}
i := 0
for ; i < len(intDigits); i++ {
dst = f.AppendDigit(dst, intDigits[i])
if f.needsSep(numInt - i) {
dst = append(dst, f.Symbol(SymGroup)...)
}
}
for ; i < numInt; i++ {
dst = f.AppendDigit(dst, 0)
if f.needsSep(numInt - i) {
dst = append(dst, f.Symbol(SymGroup)...)
}
}
if numFrac > 0 || f.Flags&AlwaysDecimalSeparator != 0 {
dst = append(dst, f.Symbol(SymDecimal)...)
}
// Add trailing zeros
i = 0
for n := -int(n.Exp); i < n; i++ {
dst = f.AppendDigit(dst, 0)
}
for _, d := range fracDigits {
i++
dst = f.AppendDigit(dst, d)
}
for ; i < numFrac; i++ {
dst = f.AppendDigit(dst, 0)
}
return appendAffix(dst, f, suffix, neg), savedLen, len(dst)
}
func scientificVisibleDigits(r RoundingContext, d *Decimal) Digits {
if d.NaN || d.Inf {
return Digits{digits: digits{Neg: d.Neg, NaN: d.NaN, Inf: d.Inf}}
}
n := Digits{digits: d.normalize().digits, IsScientific: true}
// Normalize to have at least one digit. This simplifies engineering
// notation.
if len(n.Digits) == 0 {
n.Digits = append(n.Digits, 0)
n.Exp = 1
}
// Significant digits are transformed by the parser for scientific notation
// and do not need to be handled here.
maxInt, numInt := int(r.MaxIntegerDigits), int(r.MinIntegerDigits)
if numInt == 0 {
numInt = 1
}
// If a maximum number of integers is specified, the minimum must be 1
// and the exponent is grouped by this number (e.g. for engineering)
if maxInt > numInt {
// Correct the exponent to reflect a single integer digit.
numInt = 1
// engineering
// 0.01234 ([12345]e-1) -> 1.2345e-2 12.345e-3
// 12345 ([12345]e+5) -> 1.2345e4 12.345e3
d := int(n.Exp-1) % maxInt
if d < 0 {
d += maxInt
}
numInt += d
}
p := len(n.Digits)
if maxSig := int(r.MaxSignificantDigits); maxSig > 0 {
p = maxSig
}
if maxFrac := int(r.MaxFractionDigits); maxFrac >= 0 && numInt+maxFrac < p {
p = numInt + maxFrac
}
n.round(r.Mode, p)
n.Comma = uint8(numInt)
n.End = int32(len(n.Digits))
if minSig := int32(r.MinFractionDigits) + int32(numInt); n.End < minSig {
n.End = minSig
}
return n
}
// appendScientific appends a formatted number to dst. It returns two possible
// insertion points for padding.
func appendScientific(dst []byte, f *Formatter, n *Digits) (b []byte, postPre, preSuf int) {
if dst, ok := f.renderSpecial(dst, n); ok {
return dst, 0, 0
}
digits := n.Digits
numInt := int(n.Comma)
numFrac := int(n.End) - int(n.Comma)
var intDigits, fracDigits []byte
if numInt <= len(digits) {
intDigits = digits[:numInt]
fracDigits = digits[numInt:]
} else {
intDigits = digits
}
neg := n.Neg
affix, suffix := f.getAffixes(neg)
dst = appendAffix(dst, f, affix, neg)
savedLen := len(dst)
i := 0
for ; i < len(intDigits); i++ {
dst = f.AppendDigit(dst, intDigits[i])
if f.needsSep(numInt - i) {
dst = append(dst, f.Symbol(SymGroup)...)
}
}
for ; i < numInt; i++ {
dst = f.AppendDigit(dst, 0)
if f.needsSep(numInt - i) {
dst = append(dst, f.Symbol(SymGroup)...)
}
}
if numFrac > 0 || f.Flags&AlwaysDecimalSeparator != 0 {
dst = append(dst, f.Symbol(SymDecimal)...)
}
i = 0
for ; i < len(fracDigits); i++ {
dst = f.AppendDigit(dst, fracDigits[i])
}
for ; i < numFrac; i++ {
dst = f.AppendDigit(dst, 0)
}
// exp
buf := [12]byte{}
// TODO: use exponential if superscripting is not available (no Latin
// numbers or no tags) and use exponential in all other cases.
exp := n.Exp - int32(n.Comma)
exponential := f.Symbol(SymExponential)
if exponential == "E" {
dst = append(dst, "\u202f"...) // NARROW NO-BREAK SPACE
dst = append(dst, f.Symbol(SymSuperscriptingExponent)...)
dst = append(dst, "\u202f"...) // NARROW NO-BREAK SPACE
dst = f.AppendDigit(dst, 1)
dst = f.AppendDigit(dst, 0)
switch {
case exp < 0:
dst = append(dst, superMinus...)
exp = -exp
case f.Flags&AlwaysExpSign != 0:
dst = append(dst, superPlus...)
}
b = strconv.AppendUint(buf[:0], uint64(exp), 10)
for i := len(b); i < int(f.MinExponentDigits); i++ {
dst = append(dst, superDigits[0]...)
}
for _, c := range b {
dst = append(dst, superDigits[c-'0']...)
}
} else {
dst = append(dst, exponential...)
switch {
case exp < 0:
dst = append(dst, f.Symbol(SymMinusSign)...)
exp = -exp
case f.Flags&AlwaysExpSign != 0:
dst = append(dst, f.Symbol(SymPlusSign)...)
}
b = strconv.AppendUint(buf[:0], uint64(exp), 10)
for i := len(b); i < int(f.MinExponentDigits); i++ {
dst = f.AppendDigit(dst, 0)
}
for _, c := range b {
dst = f.AppendDigit(dst, c-'0')
}
}
return appendAffix(dst, f, suffix, neg), savedLen, len(dst)
}
const (
superMinus = "\u207B" // SUPERSCRIPT HYPHEN-MINUS
superPlus = "\u207A" // SUPERSCRIPT PLUS SIGN
)
var (
// Note: the digits are not sequential!!!
superDigits = []string{
"\u2070", // SUPERSCRIPT DIGIT ZERO
"\u00B9", // SUPERSCRIPT DIGIT ONE
"\u00B2", // SUPERSCRIPT DIGIT TWO
"\u00B3", // SUPERSCRIPT DIGIT THREE
"\u2074", // SUPERSCRIPT DIGIT FOUR
"\u2075", // SUPERSCRIPT DIGIT FIVE
"\u2076", // SUPERSCRIPT DIGIT SIX
"\u2077", // SUPERSCRIPT DIGIT SEVEN
"\u2078", // SUPERSCRIPT DIGIT EIGHT
"\u2079", // SUPERSCRIPT DIGIT NINE
}
)
func (f *Formatter) getAffixes(neg bool) (affix, suffix string) {
str := f.Affix
if str != "" {
if f.NegOffset > 0 {
if neg {
str = str[f.NegOffset:]
} else {
str = str[:f.NegOffset]
}
}
sufStart := 1 + str[0]
affix = str[1:sufStart]
suffix = str[sufStart+1:]
}
// TODO: introduce a NeedNeg sign to indicate if the left pattern already
// has a sign marked?
if f.NegOffset == 0 && (neg || f.Flags&AlwaysSign != 0) {
affix = "-" + affix
}
return affix, suffix
}
func (f *Formatter) renderSpecial(dst []byte, d *Digits) (b []byte, ok bool) {
if d.NaN {
return fmtNaN(dst, f), true
}
if d.Inf {
return fmtInfinite(dst, f, d), true
}
return dst, false
}
func fmtNaN(dst []byte, f *Formatter) []byte {
return append(dst, f.Symbol(SymNan)...)
}
func fmtInfinite(dst []byte, f *Formatter, d *Digits) []byte {
affix, suffix := f.getAffixes(d.Neg)
dst = appendAffix(dst, f, affix, d.Neg)
dst = append(dst, f.Symbol(SymInfinity)...)
dst = appendAffix(dst, f, suffix, d.Neg)
return dst
}
func appendAffix(dst []byte, f *Formatter, affix string, neg bool) []byte {
quoting := false
escaping := false
for _, r := range affix {
switch {
case escaping:
// escaping occurs both inside and outside of quotes
dst = append(dst, string(r)...)
escaping = false
case r == '\\':
escaping = true
case r == '\'':
quoting = !quoting
case quoting:
dst = append(dst, string(r)...)
case r == '%':
if f.DigitShift == 3 {
dst = append(dst, f.Symbol(SymPerMille)...)
} else {
dst = append(dst, f.Symbol(SymPercentSign)...)
}
case r == '-' || r == '+':
if neg {
dst = append(dst, f.Symbol(SymMinusSign)...)
} else if f.Flags&ElideSign == 0 {
dst = append(dst, f.Symbol(SymPlusSign)...)
} else {
dst = append(dst, ' ')
}
default:
dst = append(dst, string(r)...)
}
}
return dst
}

152
vendor/golang.org/x/text/internal/number/number.go generated vendored Normal file
View File

@ -0,0 +1,152 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen.go gen_common.go
// Package number contains tools and data for formatting numbers.
package number
import (
"unicode/utf8"
"golang.org/x/text/internal/language/compact"
"golang.org/x/text/language"
)
// Info holds number formatting configuration data.
type Info struct {
system systemData // numbering system information
symIndex symOffset // index to symbols
}
// InfoFromLangID returns a Info for the given compact language identifier and
// numbering system identifier. If system is the empty string, the default
// numbering system will be taken for that language.
func InfoFromLangID(compactIndex compact.ID, numberSystem string) Info {
p := langToDefaults[compactIndex]
// Lookup the entry for the language.
pSymIndex := symOffset(0) // Default: Latin, default symbols
system, ok := systemMap[numberSystem]
if !ok {
// Take the value for the default numbering system. This is by far the
// most common case as an alternative numbering system is hardly used.
if p&hasNonLatnMask == 0 { // Latn digits.
pSymIndex = p
} else { // Non-Latn or multiple numbering systems.
// Take the first entry from the alternatives list.
data := langToAlt[p&^hasNonLatnMask]
pSymIndex = data.symIndex
system = data.system
}
} else {
langIndex := compactIndex
ns := system
outerLoop:
for ; ; p = langToDefaults[langIndex] {
if p&hasNonLatnMask == 0 {
if ns == 0 {
// The index directly points to the symbol data.
pSymIndex = p
break
}
// Move to the parent and retry.
langIndex = langIndex.Parent()
} else {
// The index points to a list of symbol data indexes.
for _, e := range langToAlt[p&^hasNonLatnMask:] {
if e.compactTag != langIndex {
if langIndex == 0 {
// The CLDR root defines full symbol information for
// all numbering systems (even though mostly by
// means of aliases). Fall back to the default entry
// for Latn if there is no data for the numbering
// system of this language.
if ns == 0 {
break
}
// Fall back to Latin and start from the original
// language. See
// https://unicode.org/reports/tr35/#Locale_Inheritance.
ns = numLatn
langIndex = compactIndex
continue outerLoop
}
// Fall back to parent.
langIndex = langIndex.Parent()
} else if e.system == ns {
pSymIndex = e.symIndex
break outerLoop
}
}
}
}
}
if int(system) >= len(numSysData) { // algorithmic
// Will generate ASCII digits in case the user inadvertently calls
// WriteDigit or Digit on it.
d := numSysData[0]
d.id = system
return Info{
system: d,
symIndex: pSymIndex,
}
}
return Info{
system: numSysData[system],
symIndex: pSymIndex,
}
}
// InfoFromTag returns a Info for the given language tag.
func InfoFromTag(t language.Tag) Info {
return InfoFromLangID(tagToID(t), t.TypeForKey("nu"))
}
// IsDecimal reports if the numbering system can convert decimal to native
// symbols one-to-one.
func (n Info) IsDecimal() bool {
return int(n.system.id) < len(numSysData)
}
// WriteDigit writes the UTF-8 sequence for n corresponding to the given ASCII
// digit to dst and reports the number of bytes written. dst must be large
// enough to hold the rune (can be up to utf8.UTFMax bytes).
func (n Info) WriteDigit(dst []byte, asciiDigit rune) int {
copy(dst, n.system.zero[:n.system.digitSize])
dst[n.system.digitSize-1] += byte(asciiDigit - '0')
return int(n.system.digitSize)
}
// AppendDigit appends the UTF-8 sequence for n corresponding to the given digit
// to dst and reports the number of bytes written. dst must be large enough to
// hold the rune (can be up to utf8.UTFMax bytes).
func (n Info) AppendDigit(dst []byte, digit byte) []byte {
dst = append(dst, n.system.zero[:n.system.digitSize]...)
dst[len(dst)-1] += digit
return dst
}
// Digit returns the digit for the numbering system for the corresponding ASCII
// value. For example, ni.Digit('3') could return '三'. Note that the argument
// is the rune constant '3', which equals 51, not the integer constant 3.
func (n Info) Digit(asciiDigit rune) rune {
var x [utf8.UTFMax]byte
n.WriteDigit(x[:], asciiDigit)
r, _ := utf8.DecodeRune(x[:])
return r
}
// Symbol returns the string for the given symbol type.
func (n Info) Symbol(t SymbolType) string {
return symData.Elem(int(symIndex[n.symIndex][t]))
}
func formatForLang(t language.Tag, index []byte) *Pattern {
return &formats[index[tagToID(t)]]
}
func tagToID(t language.Tag) compact.ID {
id, _ := compact.RegionalID(compact.Tag(t))
return id
}

485
vendor/golang.org/x/text/internal/number/pattern.go generated vendored Normal file
View File

@ -0,0 +1,485 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package number
import (
"errors"
"unicode/utf8"
)
// This file contains a parser for the CLDR number patterns as described in
// https://unicode.org/reports/tr35/tr35-numbers.html#Number_Format_Patterns.
//
// The following BNF is derived from this standard.
//
// pattern := subpattern (';' subpattern)?
// subpattern := affix? number exponent? affix?
// number := decimal | sigDigits
// decimal := '#'* '0'* ('.' fraction)? | '#' | '0'
// fraction := '0'* '#'*
// sigDigits := '#'* '@' '@'* '#'*
// exponent := 'E' '+'? '0'* '0'
// padSpec := '*' \L
//
// Notes:
// - An affix pattern may contain any runes, but runes with special meaning
// should be escaped.
// - Sequences of digits, '#', and '@' in decimal and sigDigits may have
// interstitial commas.
// TODO: replace special characters in affixes (-, +, ¤) with control codes.
// Pattern holds information for formatting numbers. It is designed to hold
// information from CLDR number patterns.
//
// This pattern is precompiled for all patterns for all languages. Even though
// the number of patterns is not very large, we want to keep this small.
//
// This type is only intended for internal use.
type Pattern struct {
RoundingContext
Affix string // includes prefix and suffix. First byte is prefix length.
Offset uint16 // Offset into Affix for prefix and suffix
NegOffset uint16 // Offset into Affix for negative prefix and suffix or 0.
PadRune rune
FormatWidth uint16
GroupingSize [2]uint8
Flags PatternFlag
}
// A RoundingContext indicates how a number should be converted to digits.
// It contains all information needed to determine the "visible digits" as
// required by the pluralization rules.
type RoundingContext struct {
// TODO: unify these two fields so that there is a more unambiguous meaning
// of how precision is handled.
MaxSignificantDigits int16 // -1 is unlimited
MaxFractionDigits int16 // -1 is unlimited
Increment uint32
IncrementScale uint8 // May differ from printed scale.
Mode RoundingMode
DigitShift uint8 // Number of decimals to shift. Used for % and ‰.
// Number of digits.
MinIntegerDigits uint8
MaxIntegerDigits uint8
MinFractionDigits uint8
MinSignificantDigits uint8
MinExponentDigits uint8
}
// RoundSignificantDigits returns the number of significant digits an
// implementation of Convert may round to or n < 0 if there is no maximum or
// a maximum is not recommended.
func (r *RoundingContext) RoundSignificantDigits() (n int) {
if r.MaxFractionDigits == 0 && r.MaxSignificantDigits > 0 {
return int(r.MaxSignificantDigits)
} else if r.isScientific() && r.MaxIntegerDigits == 1 {
if r.MaxSignificantDigits == 0 ||
int(r.MaxFractionDigits+1) == int(r.MaxSignificantDigits) {
// Note: don't add DigitShift: it is only used for decimals.
return int(r.MaxFractionDigits) + 1
}
}
return -1
}
// RoundFractionDigits returns the number of fraction digits an implementation
// of Convert may round to or n < 0 if there is no maximum or a maximum is not
// recommended.
func (r *RoundingContext) RoundFractionDigits() (n int) {
if r.MinExponentDigits == 0 &&
r.MaxSignificantDigits == 0 &&
r.MaxFractionDigits >= 0 {
return int(r.MaxFractionDigits) + int(r.DigitShift)
}
return -1
}
// SetScale fixes the RoundingContext to a fixed number of fraction digits.
func (r *RoundingContext) SetScale(scale int) {
r.MinFractionDigits = uint8(scale)
r.MaxFractionDigits = int16(scale)
}
func (r *RoundingContext) SetPrecision(prec int) {
r.MaxSignificantDigits = int16(prec)
}
func (r *RoundingContext) isScientific() bool {
return r.MinExponentDigits > 0
}
func (f *Pattern) needsSep(pos int) bool {
p := pos - 1
size := int(f.GroupingSize[0])
if size == 0 || p == 0 {
return false
}
if p == size {
return true
}
if p -= size; p < 0 {
return false
}
// TODO: make second groupingsize the same as first if 0 so that we can
// avoid this check.
if x := int(f.GroupingSize[1]); x != 0 {
size = x
}
return p%size == 0
}
// A PatternFlag is a bit mask for the flag field of a Pattern.
type PatternFlag uint8
const (
AlwaysSign PatternFlag = 1 << iota
ElideSign // Use space instead of plus sign. AlwaysSign must be true.
AlwaysExpSign
AlwaysDecimalSeparator
ParenthesisForNegative // Common pattern. Saves space.
PadAfterNumber
PadAfterAffix
PadBeforePrefix = 0 // Default
PadAfterPrefix = PadAfterAffix
PadBeforeSuffix = PadAfterNumber
PadAfterSuffix = PadAfterNumber | PadAfterAffix
PadMask = PadAfterNumber | PadAfterAffix
)
type parser struct {
*Pattern
leadingSharps int
pos int
err error
doNotTerminate bool
groupingCount uint
hasGroup bool
buf []byte
}
func (p *parser) setError(err error) {
if p.err == nil {
p.err = err
}
}
func (p *parser) updateGrouping() {
if p.hasGroup &&
0 < p.groupingCount && p.groupingCount < 255 {
p.GroupingSize[1] = p.GroupingSize[0]
p.GroupingSize[0] = uint8(p.groupingCount)
}
p.groupingCount = 0
p.hasGroup = true
}
var (
// TODO: more sensible and localizeable error messages.
errMultiplePadSpecifiers = errors.New("format: pattern has multiple pad specifiers")
errInvalidPadSpecifier = errors.New("format: invalid pad specifier")
errInvalidQuote = errors.New("format: invalid quote")
errAffixTooLarge = errors.New("format: prefix or suffix exceeds maximum UTF-8 length of 256 bytes")
errDuplicatePercentSign = errors.New("format: duplicate percent sign")
errDuplicatePermilleSign = errors.New("format: duplicate permille sign")
errUnexpectedEnd = errors.New("format: unexpected end of pattern")
)
// ParsePattern extracts formatting information from a CLDR number pattern.
//
// See https://unicode.org/reports/tr35/tr35-numbers.html#Number_Format_Patterns.
func ParsePattern(s string) (f *Pattern, err error) {
p := parser{Pattern: &Pattern{}}
s = p.parseSubPattern(s)
if s != "" {
// Parse negative sub pattern.
if s[0] != ';' {
p.setError(errors.New("format: error parsing first sub pattern"))
return nil, p.err
}
neg := parser{Pattern: &Pattern{}} // just for extracting the affixes.
s = neg.parseSubPattern(s[len(";"):])
p.NegOffset = uint16(len(p.buf))
p.buf = append(p.buf, neg.buf...)
}
if s != "" {
p.setError(errors.New("format: spurious characters at end of pattern"))
}
if p.err != nil {
return nil, p.err
}
if affix := string(p.buf); affix == "\x00\x00" || affix == "\x00\x00\x00\x00" {
// No prefix or suffixes.
p.NegOffset = 0
} else {
p.Affix = affix
}
if p.Increment == 0 {
p.IncrementScale = 0
}
return p.Pattern, nil
}
func (p *parser) parseSubPattern(s string) string {
s = p.parsePad(s, PadBeforePrefix)
s = p.parseAffix(s)
s = p.parsePad(s, PadAfterPrefix)
s = p.parse(p.number, s)
p.updateGrouping()
s = p.parsePad(s, PadBeforeSuffix)
s = p.parseAffix(s)
s = p.parsePad(s, PadAfterSuffix)
return s
}
func (p *parser) parsePad(s string, f PatternFlag) (tail string) {
if len(s) >= 2 && s[0] == '*' {
r, sz := utf8.DecodeRuneInString(s[1:])
if p.PadRune != 0 {
p.err = errMultiplePadSpecifiers
} else {
p.Flags |= f
p.PadRune = r
}
return s[1+sz:]
}
return s
}
func (p *parser) parseAffix(s string) string {
x := len(p.buf)
p.buf = append(p.buf, 0) // placeholder for affix length
s = p.parse(p.affix, s)
n := len(p.buf) - x - 1
if n > 0xFF {
p.setError(errAffixTooLarge)
}
p.buf[x] = uint8(n)
return s
}
// state implements a state transition. It returns the new state. A state
// function may set an error on the parser or may simply return on an incorrect
// token and let the next phase fail.
type state func(r rune) state
// parse repeatedly applies a state function on the given string until a
// termination condition is reached.
func (p *parser) parse(fn state, s string) (tail string) {
for i, r := range s {
p.doNotTerminate = false
if fn = fn(r); fn == nil || p.err != nil {
return s[i:]
}
p.FormatWidth++
}
if p.doNotTerminate {
p.setError(errUnexpectedEnd)
}
return ""
}
func (p *parser) affix(r rune) state {
switch r {
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'#', '@', '.', '*', ',', ';':
return nil
case '\'':
p.FormatWidth--
return p.escapeFirst
case '%':
if p.DigitShift != 0 {
p.setError(errDuplicatePercentSign)
}
p.DigitShift = 2
case '\u2030': // ‰ Per mille
if p.DigitShift != 0 {
p.setError(errDuplicatePermilleSign)
}
p.DigitShift = 3
// TODO: handle currency somehow: ¤, ¤¤, ¤¤¤, ¤¤¤¤
}
p.buf = append(p.buf, string(r)...)
return p.affix
}
func (p *parser) escapeFirst(r rune) state {
switch r {
case '\'':
p.buf = append(p.buf, "\\'"...)
return p.affix
default:
p.buf = append(p.buf, '\'')
p.buf = append(p.buf, string(r)...)
}
return p.escape
}
func (p *parser) escape(r rune) state {
switch r {
case '\'':
p.FormatWidth--
p.buf = append(p.buf, '\'')
return p.affix
default:
p.buf = append(p.buf, string(r)...)
}
return p.escape
}
// number parses a number. The BNF says the integer part should always have
// a '0', but that does not appear to be the case according to the rest of the
// documentation. We will allow having only '#' numbers.
func (p *parser) number(r rune) state {
switch r {
case '#':
p.groupingCount++
p.leadingSharps++
case '@':
p.groupingCount++
p.leadingSharps = 0
p.MaxFractionDigits = -1
return p.sigDigits(r)
case ',':
if p.leadingSharps == 0 { // no leading commas
return nil
}
p.updateGrouping()
case 'E':
p.MaxIntegerDigits = uint8(p.leadingSharps)
return p.exponent
case '.': // allow ".##" etc.
p.updateGrouping()
return p.fraction
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
return p.integer(r)
default:
return nil
}
return p.number
}
func (p *parser) integer(r rune) state {
if !('0' <= r && r <= '9') {
var next state
switch r {
case 'E':
if p.leadingSharps > 0 {
p.MaxIntegerDigits = uint8(p.leadingSharps) + p.MinIntegerDigits
}
next = p.exponent
case '.':
next = p.fraction
case ',':
next = p.integer
}
p.updateGrouping()
return next
}
p.Increment = p.Increment*10 + uint32(r-'0')
p.groupingCount++
p.MinIntegerDigits++
return p.integer
}
func (p *parser) sigDigits(r rune) state {
switch r {
case '@':
p.groupingCount++
p.MaxSignificantDigits++
p.MinSignificantDigits++
case '#':
return p.sigDigitsFinal(r)
case 'E':
p.updateGrouping()
return p.normalizeSigDigitsWithExponent()
default:
p.updateGrouping()
return nil
}
return p.sigDigits
}
func (p *parser) sigDigitsFinal(r rune) state {
switch r {
case '#':
p.groupingCount++
p.MaxSignificantDigits++
case 'E':
p.updateGrouping()
return p.normalizeSigDigitsWithExponent()
default:
p.updateGrouping()
return nil
}
return p.sigDigitsFinal
}
func (p *parser) normalizeSigDigitsWithExponent() state {
p.MinIntegerDigits, p.MaxIntegerDigits = 1, 1
p.MinFractionDigits = p.MinSignificantDigits - 1
p.MaxFractionDigits = p.MaxSignificantDigits - 1
p.MinSignificantDigits, p.MaxSignificantDigits = 0, 0
return p.exponent
}
func (p *parser) fraction(r rune) state {
switch r {
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
p.Increment = p.Increment*10 + uint32(r-'0')
p.IncrementScale++
p.MinFractionDigits++
p.MaxFractionDigits++
case '#':
p.MaxFractionDigits++
case 'E':
if p.leadingSharps > 0 {
p.MaxIntegerDigits = uint8(p.leadingSharps) + p.MinIntegerDigits
}
return p.exponent
default:
return nil
}
return p.fraction
}
func (p *parser) exponent(r rune) state {
switch r {
case '+':
// Set mode and check it wasn't already set.
if p.Flags&AlwaysExpSign != 0 || p.MinExponentDigits > 0 {
break
}
p.Flags |= AlwaysExpSign
p.doNotTerminate = true
return p.exponent
case '0':
p.MinExponentDigits++
return p.exponent
}
// termination condition
if p.MinExponentDigits == 0 {
p.setError(errors.New("format: need at least one digit"))
}
return nil
}

View File

@ -0,0 +1,30 @@
// Code generated by "stringer -type RoundingMode"; DO NOT EDIT.
package number
import "strconv"
func _() {
// An "invalid array index" compiler error signifies that the constant values have changed.
// Re-run the stringer command to generate them again.
var x [1]struct{}
_ = x[ToNearestEven-0]
_ = x[ToNearestZero-1]
_ = x[ToNearestAway-2]
_ = x[ToPositiveInf-3]
_ = x[ToNegativeInf-4]
_ = x[ToZero-5]
_ = x[AwayFromZero-6]
_ = x[numModes-7]
}
const _RoundingMode_name = "ToNearestEvenToNearestZeroToNearestAwayToPositiveInfToNegativeInfToZeroAwayFromZeronumModes"
var _RoundingMode_index = [...]uint8{0, 13, 26, 39, 52, 65, 71, 83, 91}
func (i RoundingMode) String() string {
if i >= RoundingMode(len(_RoundingMode_index)-1) {
return "RoundingMode(" + strconv.FormatInt(int64(i), 10) + ")"
}
return _RoundingMode_name[_RoundingMode_index[i]:_RoundingMode_index[i+1]]
}

1219
vendor/golang.org/x/text/internal/number/tables.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

86
vendor/golang.org/x/text/internal/stringset/set.go generated vendored Normal file
View File

@ -0,0 +1,86 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package stringset provides a way to represent a collection of strings
// compactly.
package stringset
import "sort"
// A Set holds a collection of strings that can be looked up by an index number.
type Set struct {
// These fields are exported to allow for code generation.
Data string
Index []uint16
}
// Elem returns the string with index i. It panics if i is out of range.
func (s *Set) Elem(i int) string {
return s.Data[s.Index[i]:s.Index[i+1]]
}
// Len returns the number of strings in the set.
func (s *Set) Len() int {
return len(s.Index) - 1
}
// Search returns the index of the given string or -1 if it is not in the set.
// The Set must have been created with strings in sorted order.
func Search(s *Set, str string) int {
// TODO: optimize this if it gets used a lot.
n := len(s.Index) - 1
p := sort.Search(n, func(i int) bool {
return s.Elem(i) >= str
})
if p == n || str != s.Elem(p) {
return -1
}
return p
}
// A Builder constructs Sets.
type Builder struct {
set Set
index map[string]int
}
// NewBuilder returns a new and initialized Builder.
func NewBuilder() *Builder {
return &Builder{
set: Set{
Index: []uint16{0},
},
index: map[string]int{},
}
}
// Set creates the set created so far.
func (b *Builder) Set() Set {
return b.set
}
// Index returns the index for the given string, which must have been added
// before.
func (b *Builder) Index(s string) int {
return b.index[s]
}
// Add adds a string to the index. Strings that are added by a single Add will
// be stored together, unless they match an existing string.
func (b *Builder) Add(ss ...string) {
// First check if the string already exists.
for _, s := range ss {
if _, ok := b.index[s]; ok {
continue
}
b.index[s] = len(b.set.Index) - 1
b.set.Data += s
x := len(b.set.Data)
if x > 0xFFFF {
panic("Index too > 0xFFFF")
}
b.set.Index = append(b.set.Index, uint16(x))
}
}

100
vendor/golang.org/x/text/internal/tag/tag.go generated vendored Normal file
View File

@ -0,0 +1,100 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package tag contains functionality handling tags and related data.
package tag // import "golang.org/x/text/internal/tag"
import "sort"
// An Index converts tags to a compact numeric value.
//
// All elements are of size 4. Tags may be up to 4 bytes long. Excess bytes can
// be used to store additional information about the tag.
type Index string
// Elem returns the element data at the given index.
func (s Index) Elem(x int) string {
return string(s[x*4 : x*4+4])
}
// Index reports the index of the given key or -1 if it could not be found.
// Only the first len(key) bytes from the start of the 4-byte entries will be
// considered for the search and the first match in Index will be returned.
func (s Index) Index(key []byte) int {
n := len(key)
// search the index of the first entry with an equal or higher value than
// key in s.
index := sort.Search(len(s)/4, func(i int) bool {
return cmp(s[i*4:i*4+n], key) != -1
})
i := index * 4
if cmp(s[i:i+len(key)], key) != 0 {
return -1
}
return index
}
// Next finds the next occurrence of key after index x, which must have been
// obtained from a call to Index using the same key. It returns x+1 or -1.
func (s Index) Next(key []byte, x int) int {
if x++; x*4 < len(s) && cmp(s[x*4:x*4+len(key)], key) == 0 {
return x
}
return -1
}
// cmp returns an integer comparing a and b lexicographically.
func cmp(a Index, b []byte) int {
n := len(a)
if len(b) < n {
n = len(b)
}
for i, c := range b[:n] {
switch {
case a[i] > c:
return 1
case a[i] < c:
return -1
}
}
switch {
case len(a) < len(b):
return -1
case len(a) > len(b):
return 1
}
return 0
}
// Compare returns an integer comparing a and b lexicographically.
func Compare(a string, b []byte) int {
return cmp(Index(a), b)
}
// FixCase reformats b to the same pattern of cases as form.
// If returns false if string b is malformed.
func FixCase(form string, b []byte) bool {
if len(form) != len(b) {
return false
}
for i, c := range b {
if form[i] <= 'Z' {
if c >= 'a' {
c -= 'z' - 'Z'
}
if c < 'A' || 'Z' < c {
return false
}
} else {
if c <= 'Z' {
c += 'z' - 'Z'
}
if c < 'a' || 'z' < c {
return false
}
}
b[i] = c
}
return true
}

187
vendor/golang.org/x/text/language/coverage.go generated vendored Normal file
View File

@ -0,0 +1,187 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import (
"fmt"
"sort"
"golang.org/x/text/internal/language"
)
// The Coverage interface is used to define the level of coverage of an
// internationalization service. Note that not all types are supported by all
// services. As lists may be generated on the fly, it is recommended that users
// of a Coverage cache the results.
type Coverage interface {
// Tags returns the list of supported tags.
Tags() []Tag
// BaseLanguages returns the list of supported base languages.
BaseLanguages() []Base
// Scripts returns the list of supported scripts.
Scripts() []Script
// Regions returns the list of supported regions.
Regions() []Region
}
var (
// Supported defines a Coverage that lists all supported subtags. Tags
// always returns nil.
Supported Coverage = allSubtags{}
)
// TODO:
// - Support Variants, numbering systems.
// - CLDR coverage levels.
// - Set of common tags defined in this package.
type allSubtags struct{}
// Regions returns the list of supported regions. As all regions are in a
// consecutive range, it simply returns a slice of numbers in increasing order.
// The "undefined" region is not returned.
func (s allSubtags) Regions() []Region {
reg := make([]Region, language.NumRegions)
for i := range reg {
reg[i] = Region{language.Region(i + 1)}
}
return reg
}
// Scripts returns the list of supported scripts. As all scripts are in a
// consecutive range, it simply returns a slice of numbers in increasing order.
// The "undefined" script is not returned.
func (s allSubtags) Scripts() []Script {
scr := make([]Script, language.NumScripts)
for i := range scr {
scr[i] = Script{language.Script(i + 1)}
}
return scr
}
// BaseLanguages returns the list of all supported base languages. It generates
// the list by traversing the internal structures.
func (s allSubtags) BaseLanguages() []Base {
bs := language.BaseLanguages()
base := make([]Base, len(bs))
for i, b := range bs {
base[i] = Base{b}
}
return base
}
// Tags always returns nil.
func (s allSubtags) Tags() []Tag {
return nil
}
// coverage is used by NewCoverage which is used as a convenient way for
// creating Coverage implementations for partially defined data. Very often a
// package will only need to define a subset of slices. coverage provides a
// convenient way to do this. Moreover, packages using NewCoverage, instead of
// their own implementation, will not break if later new slice types are added.
type coverage struct {
tags func() []Tag
bases func() []Base
scripts func() []Script
regions func() []Region
}
func (s *coverage) Tags() []Tag {
if s.tags == nil {
return nil
}
return s.tags()
}
// bases implements sort.Interface and is used to sort base languages.
type bases []Base
func (b bases) Len() int {
return len(b)
}
func (b bases) Swap(i, j int) {
b[i], b[j] = b[j], b[i]
}
func (b bases) Less(i, j int) bool {
return b[i].langID < b[j].langID
}
// BaseLanguages returns the result from calling s.bases if it is specified or
// otherwise derives the set of supported base languages from tags.
func (s *coverage) BaseLanguages() []Base {
if s.bases == nil {
tags := s.Tags()
if len(tags) == 0 {
return nil
}
a := make([]Base, len(tags))
for i, t := range tags {
a[i] = Base{language.Language(t.lang())}
}
sort.Sort(bases(a))
k := 0
for i := 1; i < len(a); i++ {
if a[k] != a[i] {
k++
a[k] = a[i]
}
}
return a[:k+1]
}
return s.bases()
}
func (s *coverage) Scripts() []Script {
if s.scripts == nil {
return nil
}
return s.scripts()
}
func (s *coverage) Regions() []Region {
if s.regions == nil {
return nil
}
return s.regions()
}
// NewCoverage returns a Coverage for the given lists. It is typically used by
// packages providing internationalization services to define their level of
// coverage. A list may be of type []T or func() []T, where T is either Tag,
// Base, Script or Region. The returned Coverage derives the value for Bases
// from Tags if no func or slice for []Base is specified. For other unspecified
// types the returned Coverage will return nil for the respective methods.
func NewCoverage(list ...interface{}) Coverage {
s := &coverage{}
for _, x := range list {
switch v := x.(type) {
case func() []Base:
s.bases = v
case func() []Script:
s.scripts = v
case func() []Region:
s.regions = v
case func() []Tag:
s.tags = v
case []Base:
s.bases = func() []Base { return v }
case []Script:
s.scripts = func() []Script { return v }
case []Region:
s.regions = func() []Region { return v }
case []Tag:
s.tags = func() []Tag { return v }
default:
panic(fmt.Sprintf("language: unsupported set type %T", v))
}
}
return s
}

98
vendor/golang.org/x/text/language/doc.go generated vendored Normal file
View File

@ -0,0 +1,98 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package language implements BCP 47 language tags and related functionality.
//
// The most important function of package language is to match a list of
// user-preferred languages to a list of supported languages.
// It alleviates the developer of dealing with the complexity of this process
// and provides the user with the best experience
// (see https://blog.golang.org/matchlang).
//
// # Matching preferred against supported languages
//
// A Matcher for an application that supports English, Australian English,
// Danish, and standard Mandarin can be created as follows:
//
// var matcher = language.NewMatcher([]language.Tag{
// language.English, // The first language is used as fallback.
// language.MustParse("en-AU"),
// language.Danish,
// language.Chinese,
// })
//
// This list of supported languages is typically implied by the languages for
// which there exists translations of the user interface.
//
// User-preferred languages usually come as a comma-separated list of BCP 47
// language tags.
// The MatchString finds best matches for such strings:
//
// handler(w http.ResponseWriter, r *http.Request) {
// lang, _ := r.Cookie("lang")
// accept := r.Header.Get("Accept-Language")
// tag, _ := language.MatchStrings(matcher, lang.String(), accept)
//
// // tag should now be used for the initialization of any
// // locale-specific service.
// }
//
// The Matcher's Match method can be used to match Tags directly.
//
// Matchers are aware of the intricacies of equivalence between languages, such
// as deprecated subtags, legacy tags, macro languages, mutual
// intelligibility between scripts and languages, and transparently passing
// BCP 47 user configuration.
// For instance, it will know that a reader of Bokmål Danish can read Norwegian
// and will know that Cantonese ("yue") is a good match for "zh-HK".
//
// # Using match results
//
// To guarantee a consistent user experience to the user it is important to
// use the same language tag for the selection of any locale-specific services.
// For example, it is utterly confusing to substitute spelled-out numbers
// or dates in one language in text of another language.
// More subtly confusing is using the wrong sorting order or casing
// algorithm for a certain language.
//
// All the packages in x/text that provide locale-specific services
// (e.g. collate, cases) should be initialized with the tag that was
// obtained at the start of an interaction with the user.
//
// Note that Tag that is returned by Match and MatchString may differ from any
// of the supported languages, as it may contain carried over settings from
// the user tags.
// This may be inconvenient when your application has some additional
// locale-specific data for your supported languages.
// Match and MatchString both return the index of the matched supported tag
// to simplify associating such data with the matched tag.
//
// # Canonicalization
//
// If one uses the Matcher to compare languages one does not need to
// worry about canonicalization.
//
// The meaning of a Tag varies per application. The language package
// therefore delays canonicalization and preserves information as much
// as possible. The Matcher, however, will always take into account that
// two different tags may represent the same language.
//
// By default, only legacy and deprecated tags are converted into their
// canonical equivalent. All other information is preserved. This approach makes
// the confidence scores more accurate and allows matchers to distinguish
// between variants that are otherwise lost.
//
// As a consequence, two tags that should be treated as identical according to
// BCP 47 or CLDR, like "en-Latn" and "en", will be represented differently. The
// Matcher handles such distinctions, though, and is aware of the
// equivalence relations. The CanonType type can be used to alter the
// canonicalization form.
//
// # References
//
// BCP 47 - Tags for Identifying Languages http://tools.ietf.org/html/bcp47
package language // import "golang.org/x/text/language"
// TODO: explanation on how to match languages for your own locale-specific
// service.

605
vendor/golang.org/x/text/language/language.go generated vendored Normal file
View File

@ -0,0 +1,605 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen.go -output tables.go
package language
// TODO: Remove above NOTE after:
// - verifying that tables are dropped correctly (most notably matcher tables).
import (
"strings"
"golang.org/x/text/internal/language"
"golang.org/x/text/internal/language/compact"
)
// Tag represents a BCP 47 language tag. It is used to specify an instance of a
// specific language or locale. All language tag values are guaranteed to be
// well-formed.
type Tag compact.Tag
func makeTag(t language.Tag) (tag Tag) {
return Tag(compact.Make(t))
}
func (t *Tag) tag() language.Tag {
return (*compact.Tag)(t).Tag()
}
func (t *Tag) isCompact() bool {
return (*compact.Tag)(t).IsCompact()
}
// TODO: improve performance.
func (t *Tag) lang() language.Language { return t.tag().LangID }
func (t *Tag) region() language.Region { return t.tag().RegionID }
func (t *Tag) script() language.Script { return t.tag().ScriptID }
// Make is a convenience wrapper for Parse that omits the error.
// In case of an error, a sensible default is returned.
func Make(s string) Tag {
return Default.Make(s)
}
// Make is a convenience wrapper for c.Parse that omits the error.
// In case of an error, a sensible default is returned.
func (c CanonType) Make(s string) Tag {
t, _ := c.Parse(s)
return t
}
// Raw returns the raw base language, script and region, without making an
// attempt to infer their values.
func (t Tag) Raw() (b Base, s Script, r Region) {
tt := t.tag()
return Base{tt.LangID}, Script{tt.ScriptID}, Region{tt.RegionID}
}
// IsRoot returns true if t is equal to language "und".
func (t Tag) IsRoot() bool {
return compact.Tag(t).IsRoot()
}
// CanonType can be used to enable or disable various types of canonicalization.
type CanonType int
const (
// Replace deprecated base languages with their preferred replacements.
DeprecatedBase CanonType = 1 << iota
// Replace deprecated scripts with their preferred replacements.
DeprecatedScript
// Replace deprecated regions with their preferred replacements.
DeprecatedRegion
// Remove redundant scripts.
SuppressScript
// Normalize legacy encodings. This includes legacy languages defined in
// CLDR as well as bibliographic codes defined in ISO-639.
Legacy
// Map the dominant language of a macro language group to the macro language
// subtag. For example cmn -> zh.
Macro
// The CLDR flag should be used if full compatibility with CLDR is required.
// There are a few cases where language.Tag may differ from CLDR. To follow all
// of CLDR's suggestions, use All|CLDR.
CLDR
// Raw can be used to Compose or Parse without Canonicalization.
Raw CanonType = 0
// Replace all deprecated tags with their preferred replacements.
Deprecated = DeprecatedBase | DeprecatedScript | DeprecatedRegion
// All canonicalizations recommended by BCP 47.
BCP47 = Deprecated | SuppressScript
// All canonicalizations.
All = BCP47 | Legacy | Macro
// Default is the canonicalization used by Parse, Make and Compose. To
// preserve as much information as possible, canonicalizations that remove
// potentially valuable information are not included. The Matcher is
// designed to recognize similar tags that would be the same if
// they were canonicalized using All.
Default = Deprecated | Legacy
canonLang = DeprecatedBase | Legacy | Macro
// TODO: LikelyScript, LikelyRegion: suppress similar to ICU.
)
// canonicalize returns the canonicalized equivalent of the tag and
// whether there was any change.
func canonicalize(c CanonType, t language.Tag) (language.Tag, bool) {
if c == Raw {
return t, false
}
changed := false
if c&SuppressScript != 0 {
if t.LangID.SuppressScript() == t.ScriptID {
t.ScriptID = 0
changed = true
}
}
if c&canonLang != 0 {
for {
if l, aliasType := t.LangID.Canonicalize(); l != t.LangID {
switch aliasType {
case language.Legacy:
if c&Legacy != 0 {
if t.LangID == _sh && t.ScriptID == 0 {
t.ScriptID = _Latn
}
t.LangID = l
changed = true
}
case language.Macro:
if c&Macro != 0 {
// We deviate here from CLDR. The mapping "nb" -> "no"
// qualifies as a typical Macro language mapping. However,
// for legacy reasons, CLDR maps "no", the macro language
// code for Norwegian, to the dominant variant "nb". This
// change is currently under consideration for CLDR as well.
// See https://unicode.org/cldr/trac/ticket/2698 and also
// https://unicode.org/cldr/trac/ticket/1790 for some of the
// practical implications. TODO: this check could be removed
// if CLDR adopts this change.
if c&CLDR == 0 || t.LangID != _nb {
changed = true
t.LangID = l
}
}
case language.Deprecated:
if c&DeprecatedBase != 0 {
if t.LangID == _mo && t.RegionID == 0 {
t.RegionID = _MD
}
t.LangID = l
changed = true
// Other canonicalization types may still apply.
continue
}
}
} else if c&Legacy != 0 && t.LangID == _no && c&CLDR != 0 {
t.LangID = _nb
changed = true
}
break
}
}
if c&DeprecatedScript != 0 {
if t.ScriptID == _Qaai {
changed = true
t.ScriptID = _Zinh
}
}
if c&DeprecatedRegion != 0 {
if r := t.RegionID.Canonicalize(); r != t.RegionID {
changed = true
t.RegionID = r
}
}
return t, changed
}
// Canonicalize returns the canonicalized equivalent of the tag.
func (c CanonType) Canonicalize(t Tag) (Tag, error) {
// First try fast path.
if t.isCompact() {
if _, changed := canonicalize(c, compact.Tag(t).Tag()); !changed {
return t, nil
}
}
// It is unlikely that one will canonicalize a tag after matching. So do
// a slow but simple approach here.
if tag, changed := canonicalize(c, t.tag()); changed {
tag.RemakeString()
return makeTag(tag), nil
}
return t, nil
}
// Confidence indicates the level of certainty for a given return value.
// For example, Serbian may be written in Cyrillic or Latin script.
// The confidence level indicates whether a value was explicitly specified,
// whether it is typically the only possible value, or whether there is
// an ambiguity.
type Confidence int
const (
No Confidence = iota // full confidence that there was no match
Low // most likely value picked out of a set of alternatives
High // value is generally assumed to be the correct match
Exact // exact match or explicitly specified value
)
var confName = []string{"No", "Low", "High", "Exact"}
func (c Confidence) String() string {
return confName[c]
}
// String returns the canonical string representation of the language tag.
func (t Tag) String() string {
return t.tag().String()
}
// MarshalText implements encoding.TextMarshaler.
func (t Tag) MarshalText() (text []byte, err error) {
return t.tag().MarshalText()
}
// UnmarshalText implements encoding.TextUnmarshaler.
func (t *Tag) UnmarshalText(text []byte) error {
var tag language.Tag
err := tag.UnmarshalText(text)
*t = makeTag(tag)
return err
}
// Base returns the base language of the language tag. If the base language is
// unspecified, an attempt will be made to infer it from the context.
// It uses a variant of CLDR's Add Likely Subtags algorithm. This is subject to change.
func (t Tag) Base() (Base, Confidence) {
if b := t.lang(); b != 0 {
return Base{b}, Exact
}
tt := t.tag()
c := High
if tt.ScriptID == 0 && !tt.RegionID.IsCountry() {
c = Low
}
if tag, err := tt.Maximize(); err == nil && tag.LangID != 0 {
return Base{tag.LangID}, c
}
return Base{0}, No
}
// Script infers the script for the language tag. If it was not explicitly given, it will infer
// a most likely candidate.
// If more than one script is commonly used for a language, the most likely one
// is returned with a low confidence indication. For example, it returns (Cyrl, Low)
// for Serbian.
// If a script cannot be inferred (Zzzz, No) is returned. We do not use Zyyy (undetermined)
// as one would suspect from the IANA registry for BCP 47. In a Unicode context Zyyy marks
// common characters (like 1, 2, 3, '.', etc.) and is therefore more like multiple scripts.
// See https://www.unicode.org/reports/tr24/#Values for more details. Zzzz is also used for
// unknown value in CLDR. (Zzzz, Exact) is returned if Zzzz was explicitly specified.
// Note that an inferred script is never guaranteed to be the correct one. Latin is
// almost exclusively used for Afrikaans, but Arabic has been used for some texts
// in the past. Also, the script that is commonly used may change over time.
// It uses a variant of CLDR's Add Likely Subtags algorithm. This is subject to change.
func (t Tag) Script() (Script, Confidence) {
if scr := t.script(); scr != 0 {
return Script{scr}, Exact
}
tt := t.tag()
sc, c := language.Script(_Zzzz), No
if scr := tt.LangID.SuppressScript(); scr != 0 {
// Note: it is not always the case that a language with a suppress
// script value is only written in one script (e.g. kk, ms, pa).
if tt.RegionID == 0 {
return Script{scr}, High
}
sc, c = scr, High
}
if tag, err := tt.Maximize(); err == nil {
if tag.ScriptID != sc {
sc, c = tag.ScriptID, Low
}
} else {
tt, _ = canonicalize(Deprecated|Macro, tt)
if tag, err := tt.Maximize(); err == nil && tag.ScriptID != sc {
sc, c = tag.ScriptID, Low
}
}
return Script{sc}, c
}
// Region returns the region for the language tag. If it was not explicitly given, it will
// infer a most likely candidate from the context.
// It uses a variant of CLDR's Add Likely Subtags algorithm. This is subject to change.
func (t Tag) Region() (Region, Confidence) {
if r := t.region(); r != 0 {
return Region{r}, Exact
}
tt := t.tag()
if tt, err := tt.Maximize(); err == nil {
return Region{tt.RegionID}, Low // TODO: differentiate between high and low.
}
tt, _ = canonicalize(Deprecated|Macro, tt)
if tag, err := tt.Maximize(); err == nil {
return Region{tag.RegionID}, Low
}
return Region{_ZZ}, No // TODO: return world instead of undetermined?
}
// Variants returns the variants specified explicitly for this language tag.
// or nil if no variant was specified.
func (t Tag) Variants() []Variant {
if !compact.Tag(t).MayHaveVariants() {
return nil
}
v := []Variant{}
x, str := "", t.tag().Variants()
for str != "" {
x, str = nextToken(str)
v = append(v, Variant{x})
}
return v
}
// Parent returns the CLDR parent of t. In CLDR, missing fields in data for a
// specific language are substituted with fields from the parent language.
// The parent for a language may change for newer versions of CLDR.
//
// Parent returns a tag for a less specific language that is mutually
// intelligible or Und if there is no such language. This may not be the same as
// simply stripping the last BCP 47 subtag. For instance, the parent of "zh-TW"
// is "zh-Hant", and the parent of "zh-Hant" is "und".
func (t Tag) Parent() Tag {
return Tag(compact.Tag(t).Parent())
}
// nextToken returns token t and the rest of the string.
func nextToken(s string) (t, tail string) {
p := strings.Index(s[1:], "-")
if p == -1 {
return s[1:], ""
}
p++
return s[1:p], s[p:]
}
// Extension is a single BCP 47 extension.
type Extension struct {
s string
}
// String returns the string representation of the extension, including the
// type tag.
func (e Extension) String() string {
return e.s
}
// ParseExtension parses s as an extension and returns it on success.
func ParseExtension(s string) (e Extension, err error) {
ext, err := language.ParseExtension(s)
return Extension{ext}, err
}
// Type returns the one-byte extension type of e. It returns 0 for the zero
// exception.
func (e Extension) Type() byte {
if e.s == "" {
return 0
}
return e.s[0]
}
// Tokens returns the list of tokens of e.
func (e Extension) Tokens() []string {
return strings.Split(e.s, "-")
}
// Extension returns the extension of type x for tag t. It will return
// false for ok if t does not have the requested extension. The returned
// extension will be invalid in this case.
func (t Tag) Extension(x byte) (ext Extension, ok bool) {
if !compact.Tag(t).MayHaveExtensions() {
return Extension{}, false
}
e, ok := t.tag().Extension(x)
return Extension{e}, ok
}
// Extensions returns all extensions of t.
func (t Tag) Extensions() []Extension {
if !compact.Tag(t).MayHaveExtensions() {
return nil
}
e := []Extension{}
for _, ext := range t.tag().Extensions() {
e = append(e, Extension{ext})
}
return e
}
// TypeForKey returns the type associated with the given key, where key and type
// are of the allowed values defined for the Unicode locale extension ('u') in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
// TypeForKey will traverse the inheritance chain to get the correct value.
//
// If there are multiple types associated with a key, only the first will be
// returned. If there is no type associated with a key, it returns the empty
// string.
func (t Tag) TypeForKey(key string) string {
if !compact.Tag(t).MayHaveExtensions() {
if key != "rg" && key != "va" {
return ""
}
}
return t.tag().TypeForKey(key)
}
// SetTypeForKey returns a new Tag with the key set to type, where key and type
// are of the allowed values defined for the Unicode locale extension ('u') in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
// An empty value removes an existing pair with the same key.
func (t Tag) SetTypeForKey(key, value string) (Tag, error) {
tt, err := t.tag().SetTypeForKey(key, value)
return makeTag(tt), err
}
// NumCompactTags is the number of compact tags. The maximum tag is
// NumCompactTags-1.
const NumCompactTags = compact.NumCompactTags
// CompactIndex returns an index, where 0 <= index < NumCompactTags, for tags
// for which data exists in the text repository.The index will change over time
// and should not be stored in persistent storage. If t does not match a compact
// index, exact will be false and the compact index will be returned for the
// first match after repeatedly taking the Parent of t.
func CompactIndex(t Tag) (index int, exact bool) {
id, exact := compact.LanguageID(compact.Tag(t))
return int(id), exact
}
var root = language.Tag{}
// Base is an ISO 639 language code, used for encoding the base language
// of a language tag.
type Base struct {
langID language.Language
}
// ParseBase parses a 2- or 3-letter ISO 639 code.
// It returns a ValueError if s is a well-formed but unknown language identifier
// or another error if another error occurred.
func ParseBase(s string) (Base, error) {
l, err := language.ParseBase(s)
return Base{l}, err
}
// String returns the BCP 47 representation of the base language.
func (b Base) String() string {
return b.langID.String()
}
// ISO3 returns the ISO 639-3 language code.
func (b Base) ISO3() string {
return b.langID.ISO3()
}
// IsPrivateUse reports whether this language code is reserved for private use.
func (b Base) IsPrivateUse() bool {
return b.langID.IsPrivateUse()
}
// Script is a 4-letter ISO 15924 code for representing scripts.
// It is idiomatically represented in title case.
type Script struct {
scriptID language.Script
}
// ParseScript parses a 4-letter ISO 15924 code.
// It returns a ValueError if s is a well-formed but unknown script identifier
// or another error if another error occurred.
func ParseScript(s string) (Script, error) {
sc, err := language.ParseScript(s)
return Script{sc}, err
}
// String returns the script code in title case.
// It returns "Zzzz" for an unspecified script.
func (s Script) String() string {
return s.scriptID.String()
}
// IsPrivateUse reports whether this script code is reserved for private use.
func (s Script) IsPrivateUse() bool {
return s.scriptID.IsPrivateUse()
}
// Region is an ISO 3166-1 or UN M.49 code for representing countries and regions.
type Region struct {
regionID language.Region
}
// EncodeM49 returns the Region for the given UN M.49 code.
// It returns an error if r is not a valid code.
func EncodeM49(r int) (Region, error) {
rid, err := language.EncodeM49(r)
return Region{rid}, err
}
// ParseRegion parses a 2- or 3-letter ISO 3166-1 or a UN M.49 code.
// It returns a ValueError if s is a well-formed but unknown region identifier
// or another error if another error occurred.
func ParseRegion(s string) (Region, error) {
r, err := language.ParseRegion(s)
return Region{r}, err
}
// String returns the BCP 47 representation for the region.
// It returns "ZZ" for an unspecified region.
func (r Region) String() string {
return r.regionID.String()
}
// ISO3 returns the 3-letter ISO code of r.
// Note that not all regions have a 3-letter ISO code.
// In such cases this method returns "ZZZ".
func (r Region) ISO3() string {
return r.regionID.ISO3()
}
// M49 returns the UN M.49 encoding of r, or 0 if this encoding
// is not defined for r.
func (r Region) M49() int {
return r.regionID.M49()
}
// IsPrivateUse reports whether r has the ISO 3166 User-assigned status. This
// may include private-use tags that are assigned by CLDR and used in this
// implementation. So IsPrivateUse and IsCountry can be simultaneously true.
func (r Region) IsPrivateUse() bool {
return r.regionID.IsPrivateUse()
}
// IsCountry returns whether this region is a country or autonomous area. This
// includes non-standard definitions from CLDR.
func (r Region) IsCountry() bool {
return r.regionID.IsCountry()
}
// IsGroup returns whether this region defines a collection of regions. This
// includes non-standard definitions from CLDR.
func (r Region) IsGroup() bool {
return r.regionID.IsGroup()
}
// Contains returns whether Region c is contained by Region r. It returns true
// if c == r.
func (r Region) Contains(c Region) bool {
return r.regionID.Contains(c.regionID)
}
// TLD returns the country code top-level domain (ccTLD). UK is returned for GB.
// In all other cases it returns either the region itself or an error.
//
// This method may return an error for a region for which there exists a
// canonical form with a ccTLD. To get that ccTLD canonicalize r first. The
// region will already be canonicalized it was obtained from a Tag that was
// obtained using any of the default methods.
func (r Region) TLD() (Region, error) {
tld, err := r.regionID.TLD()
return Region{tld}, err
}
// Canonicalize returns the region or a possible replacement if the region is
// deprecated. It will not return a replacement for deprecated regions that
// are split into multiple regions.
func (r Region) Canonicalize() Region {
return Region{r.regionID.Canonicalize()}
}
// Variant represents a registered variant of a language as defined by BCP 47.
type Variant struct {
variant string
}
// ParseVariant parses and returns a Variant. An error is returned if s is not
// a valid variant.
func ParseVariant(s string) (Variant, error) {
v, err := language.ParseVariant(s)
return Variant{v.String()}, err
}
// String returns the string representation of the variant.
func (v Variant) String() string {
return v.variant
}

735
vendor/golang.org/x/text/language/match.go generated vendored Normal file
View File

@ -0,0 +1,735 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import (
"errors"
"strings"
"golang.org/x/text/internal/language"
)
// A MatchOption configures a Matcher.
type MatchOption func(*matcher)
// PreferSameScript will, in the absence of a match, result in the first
// preferred tag with the same script as a supported tag to match this supported
// tag. The default is currently true, but this may change in the future.
func PreferSameScript(preferSame bool) MatchOption {
return func(m *matcher) { m.preferSameScript = preferSame }
}
// TODO(v1.0.0): consider making Matcher a concrete type, instead of interface.
// There doesn't seem to be too much need for multiple types.
// Making it a concrete type allows MatchStrings to be a method, which will
// improve its discoverability.
// MatchStrings parses and matches the given strings until one of them matches
// the language in the Matcher. A string may be an Accept-Language header as
// handled by ParseAcceptLanguage. The default language is returned if no
// other language matched.
func MatchStrings(m Matcher, lang ...string) (tag Tag, index int) {
for _, accept := range lang {
desired, _, err := ParseAcceptLanguage(accept)
if err != nil {
continue
}
if tag, index, conf := m.Match(desired...); conf != No {
return tag, index
}
}
tag, index, _ = m.Match()
return
}
// Matcher is the interface that wraps the Match method.
//
// Match returns the best match for any of the given tags, along with
// a unique index associated with the returned tag and a confidence
// score.
type Matcher interface {
Match(t ...Tag) (tag Tag, index int, c Confidence)
}
// Comprehends reports the confidence score for a speaker of a given language
// to being able to comprehend the written form of an alternative language.
func Comprehends(speaker, alternative Tag) Confidence {
_, _, c := NewMatcher([]Tag{alternative}).Match(speaker)
return c
}
// NewMatcher returns a Matcher that matches an ordered list of preferred tags
// against a list of supported tags based on written intelligibility, closeness
// of dialect, equivalence of subtags and various other rules. It is initialized
// with the list of supported tags. The first element is used as the default
// value in case no match is found.
//
// Its Match method matches the first of the given Tags to reach a certain
// confidence threshold. The tags passed to Match should therefore be specified
// in order of preference. Extensions are ignored for matching.
//
// The index returned by the Match method corresponds to the index of the
// matched tag in t, but is augmented with the Unicode extension ('u')of the
// corresponding preferred tag. This allows user locale options to be passed
// transparently.
func NewMatcher(t []Tag, options ...MatchOption) Matcher {
return newMatcher(t, options)
}
func (m *matcher) Match(want ...Tag) (t Tag, index int, c Confidence) {
var tt language.Tag
match, w, c := m.getBest(want...)
if match != nil {
tt, index = match.tag, match.index
} else {
// TODO: this should be an option
tt = m.default_.tag
if m.preferSameScript {
outer:
for _, w := range want {
script, _ := w.Script()
if script.scriptID == 0 {
// Don't do anything if there is no script, such as with
// private subtags.
continue
}
for i, h := range m.supported {
if script.scriptID == h.maxScript {
tt, index = h.tag, i
break outer
}
}
}
}
// TODO: select first language tag based on script.
}
if w.RegionID != tt.RegionID && w.RegionID != 0 {
if w.RegionID != 0 && tt.RegionID != 0 && tt.RegionID.Contains(w.RegionID) {
tt.RegionID = w.RegionID
tt.RemakeString()
} else if r := w.RegionID.String(); len(r) == 2 {
// TODO: also filter macro and deprecated.
tt, _ = tt.SetTypeForKey("rg", strings.ToLower(r)+"zzzz")
}
}
// Copy options from the user-provided tag into the result tag. This is hard
// to do after the fact, so we do it here.
// TODO: add in alternative variants to -u-va-.
// TODO: add preferred region to -u-rg-.
if e := w.Extensions(); len(e) > 0 {
b := language.Builder{}
b.SetTag(tt)
for _, e := range e {
b.AddExt(e)
}
tt = b.Make()
}
return makeTag(tt), index, c
}
// ErrMissingLikelyTagsData indicates no information was available
// to compute likely values of missing tags.
var ErrMissingLikelyTagsData = errors.New("missing likely tags data")
// func (t *Tag) setTagsFrom(id Tag) {
// t.LangID = id.LangID
// t.ScriptID = id.ScriptID
// t.RegionID = id.RegionID
// }
// Tag Matching
// CLDR defines an algorithm for finding the best match between two sets of language
// tags. The basic algorithm defines how to score a possible match and then find
// the match with the best score
// (see https://www.unicode.org/reports/tr35/#LanguageMatching).
// Using scoring has several disadvantages. The scoring obfuscates the importance of
// the various factors considered, making the algorithm harder to understand. Using
// scoring also requires the full score to be computed for each pair of tags.
//
// We will use a different algorithm which aims to have the following properties:
// - clarity on the precedence of the various selection factors, and
// - improved performance by allowing early termination of a comparison.
//
// Matching algorithm (overview)
// Input:
// - supported: a set of supported tags
// - default: the default tag to return in case there is no match
// - desired: list of desired tags, ordered by preference, starting with
// the most-preferred.
//
// Algorithm:
// 1) Set the best match to the lowest confidence level
// 2) For each tag in "desired":
// a) For each tag in "supported":
// 1) compute the match between the two tags.
// 2) if the match is better than the previous best match, replace it
// with the new match. (see next section)
// b) if the current best match is Exact and pin is true the result will be
// frozen to the language found thusfar, although better matches may
// still be found for the same language.
// 3) If the best match so far is below a certain threshold, return "default".
//
// Ranking:
// We use two phases to determine whether one pair of tags are a better match
// than another pair of tags. First, we determine a rough confidence level. If the
// levels are different, the one with the highest confidence wins.
// Second, if the rough confidence levels are identical, we use a set of tie-breaker
// rules.
//
// The confidence level of matching a pair of tags is determined by finding the
// lowest confidence level of any matches of the corresponding subtags (the
// result is deemed as good as its weakest link).
// We define the following levels:
// Exact - An exact match of a subtag, before adding likely subtags.
// MaxExact - An exact match of a subtag, after adding likely subtags.
// [See Note 2].
// High - High level of mutual intelligibility between different subtag
// variants.
// Low - Low level of mutual intelligibility between different subtag
// variants.
// No - No mutual intelligibility.
//
// The following levels can occur for each type of subtag:
// Base: Exact, MaxExact, High, Low, No
// Script: Exact, MaxExact [see Note 3], Low, No
// Region: Exact, MaxExact, High
// Variant: Exact, High
// Private: Exact, No
//
// Any result with a confidence level of Low or higher is deemed a possible match.
// Once a desired tag matches any of the supported tags with a level of MaxExact
// or higher, the next desired tag is not considered (see Step 2.b).
// Note that CLDR provides languageMatching data that defines close equivalence
// classes for base languages, scripts and regions.
//
// Tie-breaking
// If we get the same confidence level for two matches, we apply a sequence of
// tie-breaking rules. The first that succeeds defines the result. The rules are
// applied in the following order.
// 1) Original language was defined and was identical.
// 2) Original region was defined and was identical.
// 3) Distance between two maximized regions was the smallest.
// 4) Original script was defined and was identical.
// 5) Distance from want tag to have tag using the parent relation [see Note 5.]
// If there is still no winner after these rules are applied, the first match
// found wins.
//
// Notes:
// [2] In practice, as matching of Exact is done in a separate phase from
// matching the other levels, we reuse the Exact level to mean MaxExact in
// the second phase. As a consequence, we only need the levels defined by
// the Confidence type. The MaxExact confidence level is mapped to High in
// the public API.
// [3] We do not differentiate between maximized script values that were derived
// from suppressScript versus most likely tag data. We determined that in
// ranking the two, one ranks just after the other. Moreover, the two cannot
// occur concurrently. As a consequence, they are identical for practical
// purposes.
// [4] In case of deprecated, macro-equivalents and legacy mappings, we assign
// the MaxExact level to allow iw vs he to still be a closer match than
// en-AU vs en-US, for example.
// [5] In CLDR a locale inherits fields that are unspecified for this locale
// from its parent. Therefore, if a locale is a parent of another locale,
// it is a strong measure for closeness, especially when no other tie
// breaker rule applies. One could also argue it is inconsistent, for
// example, when pt-AO matches pt (which CLDR equates with pt-BR), even
// though its parent is pt-PT according to the inheritance rules.
//
// Implementation Details:
// There are several performance considerations worth pointing out. Most notably,
// we preprocess as much as possible (within reason) at the time of creation of a
// matcher. This includes:
// - creating a per-language map, which includes data for the raw base language
// and its canonicalized variant (if applicable),
// - expanding entries for the equivalence classes defined in CLDR's
// languageMatch data.
// The per-language map ensures that typically only a very small number of tags
// need to be considered. The pre-expansion of canonicalized subtags and
// equivalence classes reduces the amount of map lookups that need to be done at
// runtime.
// matcher keeps a set of supported language tags, indexed by language.
type matcher struct {
default_ *haveTag
supported []*haveTag
index map[language.Language]*matchHeader
passSettings bool
preferSameScript bool
}
// matchHeader has the lists of tags for exact matches and matches based on
// maximized and canonicalized tags for a given language.
type matchHeader struct {
haveTags []*haveTag
original bool
}
// haveTag holds a supported Tag and its maximized script and region. The maximized
// or canonicalized language is not stored as it is not needed during matching.
type haveTag struct {
tag language.Tag
// index of this tag in the original list of supported tags.
index int
// conf is the maximum confidence that can result from matching this haveTag.
// When conf < Exact this means it was inserted after applying a CLDR equivalence rule.
conf Confidence
// Maximized region and script.
maxRegion language.Region
maxScript language.Script
// altScript may be checked as an alternative match to maxScript. If altScript
// matches, the confidence level for this match is Low. Theoretically there
// could be multiple alternative scripts. This does not occur in practice.
altScript language.Script
// nextMax is the index of the next haveTag with the same maximized tags.
nextMax uint16
}
func makeHaveTag(tag language.Tag, index int) (haveTag, language.Language) {
max := tag
if tag.LangID != 0 || tag.RegionID != 0 || tag.ScriptID != 0 {
max, _ = canonicalize(All, max)
max, _ = max.Maximize()
max.RemakeString()
}
return haveTag{tag, index, Exact, max.RegionID, max.ScriptID, altScript(max.LangID, max.ScriptID), 0}, max.LangID
}
// altScript returns an alternative script that may match the given script with
// a low confidence. At the moment, the langMatch data allows for at most one
// script to map to another and we rely on this to keep the code simple.
func altScript(l language.Language, s language.Script) language.Script {
for _, alt := range matchScript {
// TODO: also match cases where language is not the same.
if (language.Language(alt.wantLang) == l || language.Language(alt.haveLang) == l) &&
language.Script(alt.haveScript) == s {
return language.Script(alt.wantScript)
}
}
return 0
}
// addIfNew adds a haveTag to the list of tags only if it is a unique tag.
// Tags that have the same maximized values are linked by index.
func (h *matchHeader) addIfNew(n haveTag, exact bool) {
h.original = h.original || exact
// Don't add new exact matches.
for _, v := range h.haveTags {
if equalsRest(v.tag, n.tag) {
return
}
}
// Allow duplicate maximized tags, but create a linked list to allow quickly
// comparing the equivalents and bail out.
for i, v := range h.haveTags {
if v.maxScript == n.maxScript &&
v.maxRegion == n.maxRegion &&
v.tag.VariantOrPrivateUseTags() == n.tag.VariantOrPrivateUseTags() {
for h.haveTags[i].nextMax != 0 {
i = int(h.haveTags[i].nextMax)
}
h.haveTags[i].nextMax = uint16(len(h.haveTags))
break
}
}
h.haveTags = append(h.haveTags, &n)
}
// header returns the matchHeader for the given language. It creates one if
// it doesn't already exist.
func (m *matcher) header(l language.Language) *matchHeader {
if h := m.index[l]; h != nil {
return h
}
h := &matchHeader{}
m.index[l] = h
return h
}
func toConf(d uint8) Confidence {
if d <= 10 {
return High
}
if d < 30 {
return Low
}
return No
}
// newMatcher builds an index for the given supported tags and returns it as
// a matcher. It also expands the index by considering various equivalence classes
// for a given tag.
func newMatcher(supported []Tag, options []MatchOption) *matcher {
m := &matcher{
index: make(map[language.Language]*matchHeader),
preferSameScript: true,
}
for _, o := range options {
o(m)
}
if len(supported) == 0 {
m.default_ = &haveTag{}
return m
}
// Add supported languages to the index. Add exact matches first to give
// them precedence.
for i, tag := range supported {
tt := tag.tag()
pair, _ := makeHaveTag(tt, i)
m.header(tt.LangID).addIfNew(pair, true)
m.supported = append(m.supported, &pair)
}
m.default_ = m.header(supported[0].lang()).haveTags[0]
// Keep these in two different loops to support the case that two equivalent
// languages are distinguished, such as iw and he.
for i, tag := range supported {
tt := tag.tag()
pair, max := makeHaveTag(tt, i)
if max != tt.LangID {
m.header(max).addIfNew(pair, true)
}
}
// update is used to add indexes in the map for equivalent languages.
// update will only add entries to original indexes, thus not computing any
// transitive relations.
update := func(want, have uint16, conf Confidence) {
if hh := m.index[language.Language(have)]; hh != nil {
if !hh.original {
return
}
hw := m.header(language.Language(want))
for _, ht := range hh.haveTags {
v := *ht
if conf < v.conf {
v.conf = conf
}
v.nextMax = 0 // this value needs to be recomputed
if v.altScript != 0 {
v.altScript = altScript(language.Language(want), v.maxScript)
}
hw.addIfNew(v, conf == Exact && hh.original)
}
}
}
// Add entries for languages with mutual intelligibility as defined by CLDR's
// languageMatch data.
for _, ml := range matchLang {
update(ml.want, ml.have, toConf(ml.distance))
if !ml.oneway {
update(ml.have, ml.want, toConf(ml.distance))
}
}
// Add entries for possible canonicalizations. This is an optimization to
// ensure that only one map lookup needs to be done at runtime per desired tag.
// First we match deprecated equivalents. If they are perfect equivalents
// (their canonicalization simply substitutes a different language code, but
// nothing else), the match confidence is Exact, otherwise it is High.
for i, lm := range language.AliasMap {
// If deprecated codes match and there is no fiddling with the script
// or region, we consider it an exact match.
conf := Exact
if language.AliasTypes[i] != language.Macro {
if !isExactEquivalent(language.Language(lm.From)) {
conf = High
}
update(lm.To, lm.From, conf)
}
update(lm.From, lm.To, conf)
}
return m
}
// getBest gets the best matching tag in m for any of the given tags, taking into
// account the order of preference of the given tags.
func (m *matcher) getBest(want ...Tag) (got *haveTag, orig language.Tag, c Confidence) {
best := bestMatch{}
for i, ww := range want {
w := ww.tag()
var max language.Tag
// Check for exact match first.
h := m.index[w.LangID]
if w.LangID != 0 {
if h == nil {
continue
}
// Base language is defined.
max, _ = canonicalize(Legacy|Deprecated|Macro, w)
// A region that is added through canonicalization is stronger than
// a maximized region: set it in the original (e.g. mo -> ro-MD).
if w.RegionID != max.RegionID {
w.RegionID = max.RegionID
}
// TODO: should we do the same for scripts?
// See test case: en, sr, nl ; sh ; sr
max, _ = max.Maximize()
} else {
// Base language is not defined.
if h != nil {
for i := range h.haveTags {
have := h.haveTags[i]
if equalsRest(have.tag, w) {
return have, w, Exact
}
}
}
if w.ScriptID == 0 && w.RegionID == 0 {
// We skip all tags matching und for approximate matching, including
// private tags.
continue
}
max, _ = w.Maximize()
if h = m.index[max.LangID]; h == nil {
continue
}
}
pin := true
for _, t := range want[i+1:] {
if w.LangID == t.lang() {
pin = false
break
}
}
// Check for match based on maximized tag.
for i := range h.haveTags {
have := h.haveTags[i]
best.update(have, w, max.ScriptID, max.RegionID, pin)
if best.conf == Exact {
for have.nextMax != 0 {
have = h.haveTags[have.nextMax]
best.update(have, w, max.ScriptID, max.RegionID, pin)
}
return best.have, best.want, best.conf
}
}
}
if best.conf <= No {
if len(want) != 0 {
return nil, want[0].tag(), No
}
return nil, language.Tag{}, No
}
return best.have, best.want, best.conf
}
// bestMatch accumulates the best match so far.
type bestMatch struct {
have *haveTag
want language.Tag
conf Confidence
pinnedRegion language.Region
pinLanguage bool
sameRegionGroup bool
// Cached results from applying tie-breaking rules.
origLang bool
origReg bool
paradigmReg bool
regGroupDist uint8
origScript bool
}
// update updates the existing best match if the new pair is considered to be a
// better match. To determine if the given pair is a better match, it first
// computes the rough confidence level. If this surpasses the current match, it
// will replace it and update the tie-breaker rule cache. If there is a tie, it
// proceeds with applying a series of tie-breaker rules. If there is no
// conclusive winner after applying the tie-breaker rules, it leaves the current
// match as the preferred match.
//
// If pin is true and have and tag are a strong match, it will henceforth only
// consider matches for this language. This corresponds to the idea that most
// users have a strong preference for the first defined language. A user can
// still prefer a second language over a dialect of the preferred language by
// explicitly specifying dialects, e.g. "en, nl, en-GB". In this case pin should
// be false.
func (m *bestMatch) update(have *haveTag, tag language.Tag, maxScript language.Script, maxRegion language.Region, pin bool) {
// Bail if the maximum attainable confidence is below that of the current best match.
c := have.conf
if c < m.conf {
return
}
// Don't change the language once we already have found an exact match.
if m.pinLanguage && tag.LangID != m.want.LangID {
return
}
// Pin the region group if we are comparing tags for the same language.
if tag.LangID == m.want.LangID && m.sameRegionGroup {
_, sameGroup := regionGroupDist(m.pinnedRegion, have.maxRegion, have.maxScript, m.want.LangID)
if !sameGroup {
return
}
}
if c == Exact && have.maxScript == maxScript {
// If there is another language and then another entry of this language,
// don't pin anything, otherwise pin the language.
m.pinLanguage = pin
}
if equalsRest(have.tag, tag) {
} else if have.maxScript != maxScript {
// There is usually very little comprehension between different scripts.
// In a few cases there may still be Low comprehension. This possibility
// is pre-computed and stored in have.altScript.
if Low < m.conf || have.altScript != maxScript {
return
}
c = Low
} else if have.maxRegion != maxRegion {
if High < c {
// There is usually a small difference between languages across regions.
c = High
}
}
// We store the results of the computations of the tie-breaker rules along
// with the best match. There is no need to do the checks once we determine
// we have a winner, but we do still need to do the tie-breaker computations.
// We use "beaten" to keep track if we still need to do the checks.
beaten := false // true if the new pair defeats the current one.
if c != m.conf {
if c < m.conf {
return
}
beaten = true
}
// Tie-breaker rules:
// We prefer if the pre-maximized language was specified and identical.
origLang := have.tag.LangID == tag.LangID && tag.LangID != 0
if !beaten && m.origLang != origLang {
if m.origLang {
return
}
beaten = true
}
// We prefer if the pre-maximized region was specified and identical.
origReg := have.tag.RegionID == tag.RegionID && tag.RegionID != 0
if !beaten && m.origReg != origReg {
if m.origReg {
return
}
beaten = true
}
regGroupDist, sameGroup := regionGroupDist(have.maxRegion, maxRegion, maxScript, tag.LangID)
if !beaten && m.regGroupDist != regGroupDist {
if regGroupDist > m.regGroupDist {
return
}
beaten = true
}
paradigmReg := isParadigmLocale(tag.LangID, have.maxRegion)
if !beaten && m.paradigmReg != paradigmReg {
if !paradigmReg {
return
}
beaten = true
}
// Next we prefer if the pre-maximized script was specified and identical.
origScript := have.tag.ScriptID == tag.ScriptID && tag.ScriptID != 0
if !beaten && m.origScript != origScript {
if m.origScript {
return
}
beaten = true
}
// Update m to the newly found best match.
if beaten {
m.have = have
m.want = tag
m.conf = c
m.pinnedRegion = maxRegion
m.sameRegionGroup = sameGroup
m.origLang = origLang
m.origReg = origReg
m.paradigmReg = paradigmReg
m.origScript = origScript
m.regGroupDist = regGroupDist
}
}
func isParadigmLocale(lang language.Language, r language.Region) bool {
for _, e := range paradigmLocales {
if language.Language(e[0]) == lang && (r == language.Region(e[1]) || r == language.Region(e[2])) {
return true
}
}
return false
}
// regionGroupDist computes the distance between two regions based on their
// CLDR grouping.
func regionGroupDist(a, b language.Region, script language.Script, lang language.Language) (dist uint8, same bool) {
const defaultDistance = 4
aGroup := uint(regionToGroups[a]) << 1
bGroup := uint(regionToGroups[b]) << 1
for _, ri := range matchRegion {
if language.Language(ri.lang) == lang && (ri.script == 0 || language.Script(ri.script) == script) {
group := uint(1 << (ri.group &^ 0x80))
if 0x80&ri.group == 0 {
if aGroup&bGroup&group != 0 { // Both regions are in the group.
return ri.distance, ri.distance == defaultDistance
}
} else {
if (aGroup|bGroup)&group == 0 { // Both regions are not in the group.
return ri.distance, ri.distance == defaultDistance
}
}
}
}
return defaultDistance, true
}
// equalsRest compares everything except the language.
func equalsRest(a, b language.Tag) bool {
// TODO: don't include extensions in this comparison. To do this efficiently,
// though, we should handle private tags separately.
return a.ScriptID == b.ScriptID && a.RegionID == b.RegionID && a.VariantOrPrivateUseTags() == b.VariantOrPrivateUseTags()
}
// isExactEquivalent returns true if canonicalizing the language will not alter
// the script or region of a tag.
func isExactEquivalent(l language.Language) bool {
for _, o := range notEquivalent {
if o == l {
return false
}
}
return true
}
var notEquivalent []language.Language
func init() {
// Create a list of all languages for which canonicalization may alter the
// script or region.
for _, lm := range language.AliasMap {
tag := language.Tag{LangID: language.Language(lm.From)}
if tag, _ = canonicalize(All, tag); tag.ScriptID != 0 || tag.RegionID != 0 {
notEquivalent = append(notEquivalent, language.Language(lm.From))
}
}
// Maximize undefined regions of paradigm locales.
for i, v := range paradigmLocales {
t := language.Tag{LangID: language.Language(v[0])}
max, _ := t.Maximize()
if v[1] == 0 {
paradigmLocales[i][1] = uint16(max.RegionID)
}
if v[2] == 0 {
paradigmLocales[i][2] = uint16(max.RegionID)
}
}
}

256
vendor/golang.org/x/text/language/parse.go generated vendored Normal file
View File

@ -0,0 +1,256 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import (
"errors"
"sort"
"strconv"
"strings"
"golang.org/x/text/internal/language"
)
// ValueError is returned by any of the parsing functions when the
// input is well-formed but the respective subtag is not recognized
// as a valid value.
type ValueError interface {
error
// Subtag returns the subtag for which the error occurred.
Subtag() string
}
// Parse parses the given BCP 47 string and returns a valid Tag. If parsing
// failed it returns an error and any part of the tag that could be parsed.
// If parsing succeeded but an unknown value was found, it returns
// ValueError. The Tag returned in this case is just stripped of the unknown
// value. All other values are preserved. It accepts tags in the BCP 47 format
// and extensions to this standard defined in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
// The resulting tag is canonicalized using the default canonicalization type.
func Parse(s string) (t Tag, err error) {
return Default.Parse(s)
}
// Parse parses the given BCP 47 string and returns a valid Tag. If parsing
// failed it returns an error and any part of the tag that could be parsed.
// If parsing succeeded but an unknown value was found, it returns
// ValueError. The Tag returned in this case is just stripped of the unknown
// value. All other values are preserved. It accepts tags in the BCP 47 format
// and extensions to this standard defined in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
// The resulting tag is canonicalized using the canonicalization type c.
func (c CanonType) Parse(s string) (t Tag, err error) {
defer func() {
if recover() != nil {
t = Tag{}
err = language.ErrSyntax
}
}()
tt, err := language.Parse(s)
if err != nil {
return makeTag(tt), err
}
tt, changed := canonicalize(c, tt)
if changed {
tt.RemakeString()
}
return makeTag(tt), err
}
// Compose creates a Tag from individual parts, which may be of type Tag, Base,
// Script, Region, Variant, []Variant, Extension, []Extension or error. If a
// Base, Script or Region or slice of type Variant or Extension is passed more
// than once, the latter will overwrite the former. Variants and Extensions are
// accumulated, but if two extensions of the same type are passed, the latter
// will replace the former. For -u extensions, though, the key-type pairs are
// added, where later values overwrite older ones. A Tag overwrites all former
// values and typically only makes sense as the first argument. The resulting
// tag is returned after canonicalizing using the Default CanonType. If one or
// more errors are encountered, one of the errors is returned.
func Compose(part ...interface{}) (t Tag, err error) {
return Default.Compose(part...)
}
// Compose creates a Tag from individual parts, which may be of type Tag, Base,
// Script, Region, Variant, []Variant, Extension, []Extension or error. If a
// Base, Script or Region or slice of type Variant or Extension is passed more
// than once, the latter will overwrite the former. Variants and Extensions are
// accumulated, but if two extensions of the same type are passed, the latter
// will replace the former. For -u extensions, though, the key-type pairs are
// added, where later values overwrite older ones. A Tag overwrites all former
// values and typically only makes sense as the first argument. The resulting
// tag is returned after canonicalizing using CanonType c. If one or more errors
// are encountered, one of the errors is returned.
func (c CanonType) Compose(part ...interface{}) (t Tag, err error) {
defer func() {
if recover() != nil {
t = Tag{}
err = language.ErrSyntax
}
}()
var b language.Builder
if err = update(&b, part...); err != nil {
return und, err
}
b.Tag, _ = canonicalize(c, b.Tag)
return makeTag(b.Make()), err
}
var errInvalidArgument = errors.New("invalid Extension or Variant")
func update(b *language.Builder, part ...interface{}) (err error) {
for _, x := range part {
switch v := x.(type) {
case Tag:
b.SetTag(v.tag())
case Base:
b.Tag.LangID = v.langID
case Script:
b.Tag.ScriptID = v.scriptID
case Region:
b.Tag.RegionID = v.regionID
case Variant:
if v.variant == "" {
err = errInvalidArgument
break
}
b.AddVariant(v.variant)
case Extension:
if v.s == "" {
err = errInvalidArgument
break
}
b.SetExt(v.s)
case []Variant:
b.ClearVariants()
for _, v := range v {
b.AddVariant(v.variant)
}
case []Extension:
b.ClearExtensions()
for _, e := range v {
b.SetExt(e.s)
}
// TODO: support parsing of raw strings based on morphology or just extensions?
case error:
if v != nil {
err = v
}
}
}
return
}
var errInvalidWeight = errors.New("ParseAcceptLanguage: invalid weight")
var errTagListTooLarge = errors.New("tag list exceeds max length")
// ParseAcceptLanguage parses the contents of an Accept-Language header as
// defined in http://www.ietf.org/rfc/rfc2616.txt and returns a list of Tags and
// a list of corresponding quality weights. It is more permissive than RFC 2616
// and may return non-nil slices even if the input is not valid.
// The Tags will be sorted by highest weight first and then by first occurrence.
// Tags with a weight of zero will be dropped. An error will be returned if the
// input could not be parsed.
func ParseAcceptLanguage(s string) (tag []Tag, q []float32, err error) {
defer func() {
if recover() != nil {
tag = nil
q = nil
err = language.ErrSyntax
}
}()
if strings.Count(s, "-") > 1000 {
return nil, nil, errTagListTooLarge
}
var entry string
for s != "" {
if entry, s = split(s, ','); entry == "" {
continue
}
entry, weight := split(entry, ';')
// Scan the language.
t, err := Parse(entry)
if err != nil {
id, ok := acceptFallback[entry]
if !ok {
return nil, nil, err
}
t = makeTag(language.Tag{LangID: id})
}
// Scan the optional weight.
w := 1.0
if weight != "" {
weight = consume(weight, 'q')
weight = consume(weight, '=')
// consume returns the empty string when a token could not be
// consumed, resulting in an error for ParseFloat.
if w, err = strconv.ParseFloat(weight, 32); err != nil {
return nil, nil, errInvalidWeight
}
// Drop tags with a quality weight of 0.
if w <= 0 {
continue
}
}
tag = append(tag, t)
q = append(q, float32(w))
}
sort.Stable(&tagSort{tag, q})
return tag, q, nil
}
// consume removes a leading token c from s and returns the result or the empty
// string if there is no such token.
func consume(s string, c byte) string {
if s == "" || s[0] != c {
return ""
}
return strings.TrimSpace(s[1:])
}
func split(s string, c byte) (head, tail string) {
if i := strings.IndexByte(s, c); i >= 0 {
return strings.TrimSpace(s[:i]), strings.TrimSpace(s[i+1:])
}
return strings.TrimSpace(s), ""
}
// Add hack mapping to deal with a small number of cases that occur
// in Accept-Language (with reasonable frequency).
var acceptFallback = map[string]language.Language{
"english": _en,
"deutsch": _de,
"italian": _it,
"french": _fr,
"*": _mul, // defined in the spec to match all languages.
}
type tagSort struct {
tag []Tag
q []float32
}
func (s *tagSort) Len() int {
return len(s.q)
}
func (s *tagSort) Less(i, j int) bool {
return s.q[i] > s.q[j]
}
func (s *tagSort) Swap(i, j int) {
s.tag[i], s.tag[j] = s.tag[j], s.tag[i]
s.q[i], s.q[j] = s.q[j], s.q[i]
}

298
vendor/golang.org/x/text/language/tables.go generated vendored Normal file
View File

@ -0,0 +1,298 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
package language
// CLDRVersion is the CLDR version from which the tables in this package are derived.
const CLDRVersion = "32"
const (
_de = 269
_en = 313
_fr = 350
_it = 505
_mo = 784
_no = 879
_nb = 839
_pt = 960
_sh = 1031
_mul = 806
_und = 0
)
const (
_001 = 1
_419 = 31
_BR = 65
_CA = 73
_ES = 111
_GB = 124
_MD = 189
_PT = 239
_UK = 307
_US = 310
_ZZ = 358
_XA = 324
_XC = 326
_XK = 334
)
const (
_Latn = 91
_Hani = 57
_Hans = 59
_Hant = 60
_Qaaa = 149
_Qaai = 157
_Qabx = 198
_Zinh = 255
_Zyyy = 260
_Zzzz = 261
)
var regionToGroups = []uint8{ // 359 elements
// Entry 0 - 3F
0x00, 0x00, 0x00, 0x04, 0x04, 0x00, 0x00, 0x04,
0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x04, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x00,
0x00, 0x04, 0x00, 0x00, 0x04, 0x01, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x00, 0x04,
// Entry 40 - 7F
0x04, 0x04, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00,
0x04, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x04, 0x00, 0x00, 0x04, 0x00, 0x00, 0x04,
0x00, 0x00, 0x04, 0x00, 0x04, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x00,
0x08, 0x00, 0x04, 0x00, 0x00, 0x08, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x04,
// Entry 80 - BF
0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x04, 0x00,
0x00, 0x00, 0x04, 0x01, 0x00, 0x04, 0x02, 0x00,
0x04, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x00,
0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x08, 0x08, 0x00, 0x00, 0x00, 0x04,
// Entry C0 - FF
0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02,
0x01, 0x04, 0x08, 0x04, 0x00, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x04, 0x00, 0x04, 0x00, 0x00,
0x00, 0x00, 0x00, 0x04, 0x00, 0x05, 0x00, 0x00,
0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Entry 100 - 13F
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
0x00, 0x00, 0x00, 0x04, 0x04, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x08, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x05, 0x04,
0x00, 0x00, 0x04, 0x00, 0x04, 0x04, 0x05, 0x00,
// Entry 140 - 17F
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
} // Size: 383 bytes
var paradigmLocales = [][3]uint16{ // 3 elements
0: [3]uint16{0x139, 0x0, 0x7c},
1: [3]uint16{0x13e, 0x0, 0x1f},
2: [3]uint16{0x3c0, 0x41, 0xef},
} // Size: 42 bytes
type mutualIntelligibility struct {
want uint16
have uint16
distance uint8
oneway bool
}
type scriptIntelligibility struct {
wantLang uint16
haveLang uint16
wantScript uint8
haveScript uint8
distance uint8
}
type regionIntelligibility struct {
lang uint16
script uint8
group uint8
distance uint8
}
// matchLang holds pairs of langIDs of base languages that are typically
// mutually intelligible. Each pair is associated with a confidence and
// whether the intelligibility goes one or both ways.
var matchLang = []mutualIntelligibility{ // 113 elements
0: {want: 0x1d1, have: 0xb7, distance: 0x4, oneway: false},
1: {want: 0x407, have: 0xb7, distance: 0x4, oneway: false},
2: {want: 0x407, have: 0x1d1, distance: 0x4, oneway: false},
3: {want: 0x407, have: 0x432, distance: 0x4, oneway: false},
4: {want: 0x43a, have: 0x1, distance: 0x4, oneway: false},
5: {want: 0x1a3, have: 0x10d, distance: 0x4, oneway: true},
6: {want: 0x295, have: 0x10d, distance: 0x4, oneway: true},
7: {want: 0x101, have: 0x36f, distance: 0x8, oneway: false},
8: {want: 0x101, have: 0x347, distance: 0x8, oneway: false},
9: {want: 0x5, have: 0x3e2, distance: 0xa, oneway: true},
10: {want: 0xd, have: 0x139, distance: 0xa, oneway: true},
11: {want: 0x16, have: 0x367, distance: 0xa, oneway: true},
12: {want: 0x21, have: 0x139, distance: 0xa, oneway: true},
13: {want: 0x56, have: 0x13e, distance: 0xa, oneway: true},
14: {want: 0x58, have: 0x3e2, distance: 0xa, oneway: true},
15: {want: 0x71, have: 0x3e2, distance: 0xa, oneway: true},
16: {want: 0x75, have: 0x139, distance: 0xa, oneway: true},
17: {want: 0x82, have: 0x1be, distance: 0xa, oneway: true},
18: {want: 0xa5, have: 0x139, distance: 0xa, oneway: true},
19: {want: 0xb2, have: 0x15e, distance: 0xa, oneway: true},
20: {want: 0xdd, have: 0x153, distance: 0xa, oneway: true},
21: {want: 0xe5, have: 0x139, distance: 0xa, oneway: true},
22: {want: 0xe9, have: 0x3a, distance: 0xa, oneway: true},
23: {want: 0xf0, have: 0x15e, distance: 0xa, oneway: true},
24: {want: 0xf9, have: 0x15e, distance: 0xa, oneway: true},
25: {want: 0x100, have: 0x139, distance: 0xa, oneway: true},
26: {want: 0x130, have: 0x139, distance: 0xa, oneway: true},
27: {want: 0x13c, have: 0x139, distance: 0xa, oneway: true},
28: {want: 0x140, have: 0x151, distance: 0xa, oneway: true},
29: {want: 0x145, have: 0x13e, distance: 0xa, oneway: true},
30: {want: 0x158, have: 0x101, distance: 0xa, oneway: true},
31: {want: 0x16d, have: 0x367, distance: 0xa, oneway: true},
32: {want: 0x16e, have: 0x139, distance: 0xa, oneway: true},
33: {want: 0x16f, have: 0x139, distance: 0xa, oneway: true},
34: {want: 0x17e, have: 0x139, distance: 0xa, oneway: true},
35: {want: 0x190, have: 0x13e, distance: 0xa, oneway: true},
36: {want: 0x194, have: 0x13e, distance: 0xa, oneway: true},
37: {want: 0x1a4, have: 0x1be, distance: 0xa, oneway: true},
38: {want: 0x1b4, have: 0x139, distance: 0xa, oneway: true},
39: {want: 0x1b8, have: 0x139, distance: 0xa, oneway: true},
40: {want: 0x1d4, have: 0x15e, distance: 0xa, oneway: true},
41: {want: 0x1d7, have: 0x3e2, distance: 0xa, oneway: true},
42: {want: 0x1d9, have: 0x139, distance: 0xa, oneway: true},
43: {want: 0x1e7, have: 0x139, distance: 0xa, oneway: true},
44: {want: 0x1f8, have: 0x139, distance: 0xa, oneway: true},
45: {want: 0x20e, have: 0x1e1, distance: 0xa, oneway: true},
46: {want: 0x210, have: 0x139, distance: 0xa, oneway: true},
47: {want: 0x22d, have: 0x15e, distance: 0xa, oneway: true},
48: {want: 0x242, have: 0x3e2, distance: 0xa, oneway: true},
49: {want: 0x24a, have: 0x139, distance: 0xa, oneway: true},
50: {want: 0x251, have: 0x139, distance: 0xa, oneway: true},
51: {want: 0x265, have: 0x139, distance: 0xa, oneway: true},
52: {want: 0x274, have: 0x48a, distance: 0xa, oneway: true},
53: {want: 0x28a, have: 0x3e2, distance: 0xa, oneway: true},
54: {want: 0x28e, have: 0x1f9, distance: 0xa, oneway: true},
55: {want: 0x2a3, have: 0x139, distance: 0xa, oneway: true},
56: {want: 0x2b5, have: 0x15e, distance: 0xa, oneway: true},
57: {want: 0x2b8, have: 0x139, distance: 0xa, oneway: true},
58: {want: 0x2be, have: 0x139, distance: 0xa, oneway: true},
59: {want: 0x2c3, have: 0x15e, distance: 0xa, oneway: true},
60: {want: 0x2ed, have: 0x139, distance: 0xa, oneway: true},
61: {want: 0x2f1, have: 0x15e, distance: 0xa, oneway: true},
62: {want: 0x2fa, have: 0x139, distance: 0xa, oneway: true},
63: {want: 0x2ff, have: 0x7e, distance: 0xa, oneway: true},
64: {want: 0x304, have: 0x139, distance: 0xa, oneway: true},
65: {want: 0x30b, have: 0x3e2, distance: 0xa, oneway: true},
66: {want: 0x31b, have: 0x1be, distance: 0xa, oneway: true},
67: {want: 0x31f, have: 0x1e1, distance: 0xa, oneway: true},
68: {want: 0x320, have: 0x139, distance: 0xa, oneway: true},
69: {want: 0x331, have: 0x139, distance: 0xa, oneway: true},
70: {want: 0x351, have: 0x139, distance: 0xa, oneway: true},
71: {want: 0x36a, have: 0x347, distance: 0xa, oneway: false},
72: {want: 0x36a, have: 0x36f, distance: 0xa, oneway: true},
73: {want: 0x37a, have: 0x139, distance: 0xa, oneway: true},
74: {want: 0x387, have: 0x139, distance: 0xa, oneway: true},
75: {want: 0x389, have: 0x139, distance: 0xa, oneway: true},
76: {want: 0x38b, have: 0x15e, distance: 0xa, oneway: true},
77: {want: 0x390, have: 0x139, distance: 0xa, oneway: true},
78: {want: 0x395, have: 0x139, distance: 0xa, oneway: true},
79: {want: 0x39d, have: 0x139, distance: 0xa, oneway: true},
80: {want: 0x3a5, have: 0x139, distance: 0xa, oneway: true},
81: {want: 0x3be, have: 0x139, distance: 0xa, oneway: true},
82: {want: 0x3c4, have: 0x13e, distance: 0xa, oneway: true},
83: {want: 0x3d4, have: 0x10d, distance: 0xa, oneway: true},
84: {want: 0x3d9, have: 0x139, distance: 0xa, oneway: true},
85: {want: 0x3e5, have: 0x15e, distance: 0xa, oneway: true},
86: {want: 0x3e9, have: 0x1be, distance: 0xa, oneway: true},
87: {want: 0x3fa, have: 0x139, distance: 0xa, oneway: true},
88: {want: 0x40c, have: 0x139, distance: 0xa, oneway: true},
89: {want: 0x423, have: 0x139, distance: 0xa, oneway: true},
90: {want: 0x429, have: 0x139, distance: 0xa, oneway: true},
91: {want: 0x431, have: 0x139, distance: 0xa, oneway: true},
92: {want: 0x43b, have: 0x139, distance: 0xa, oneway: true},
93: {want: 0x43e, have: 0x1e1, distance: 0xa, oneway: true},
94: {want: 0x445, have: 0x139, distance: 0xa, oneway: true},
95: {want: 0x450, have: 0x139, distance: 0xa, oneway: true},
96: {want: 0x461, have: 0x139, distance: 0xa, oneway: true},
97: {want: 0x467, have: 0x3e2, distance: 0xa, oneway: true},
98: {want: 0x46f, have: 0x139, distance: 0xa, oneway: true},
99: {want: 0x476, have: 0x3e2, distance: 0xa, oneway: true},
100: {want: 0x3883, have: 0x139, distance: 0xa, oneway: true},
101: {want: 0x480, have: 0x139, distance: 0xa, oneway: true},
102: {want: 0x482, have: 0x139, distance: 0xa, oneway: true},
103: {want: 0x494, have: 0x3e2, distance: 0xa, oneway: true},
104: {want: 0x49d, have: 0x139, distance: 0xa, oneway: true},
105: {want: 0x4ac, have: 0x529, distance: 0xa, oneway: true},
106: {want: 0x4b4, have: 0x139, distance: 0xa, oneway: true},
107: {want: 0x4bc, have: 0x3e2, distance: 0xa, oneway: true},
108: {want: 0x4e5, have: 0x15e, distance: 0xa, oneway: true},
109: {want: 0x4f2, have: 0x139, distance: 0xa, oneway: true},
110: {want: 0x512, have: 0x139, distance: 0xa, oneway: true},
111: {want: 0x518, have: 0x139, distance: 0xa, oneway: true},
112: {want: 0x52f, have: 0x139, distance: 0xa, oneway: true},
} // Size: 702 bytes
// matchScript holds pairs of scriptIDs where readers of one script
// can typically also read the other. Each is associated with a confidence.
var matchScript = []scriptIntelligibility{ // 26 elements
0: {wantLang: 0x432, haveLang: 0x432, wantScript: 0x5b, haveScript: 0x20, distance: 0x5},
1: {wantLang: 0x432, haveLang: 0x432, wantScript: 0x20, haveScript: 0x5b, distance: 0x5},
2: {wantLang: 0x58, haveLang: 0x3e2, wantScript: 0x5b, haveScript: 0x20, distance: 0xa},
3: {wantLang: 0xa5, haveLang: 0x139, wantScript: 0xe, haveScript: 0x5b, distance: 0xa},
4: {wantLang: 0x1d7, haveLang: 0x3e2, wantScript: 0x8, haveScript: 0x20, distance: 0xa},
5: {wantLang: 0x210, haveLang: 0x139, wantScript: 0x2e, haveScript: 0x5b, distance: 0xa},
6: {wantLang: 0x24a, haveLang: 0x139, wantScript: 0x4f, haveScript: 0x5b, distance: 0xa},
7: {wantLang: 0x251, haveLang: 0x139, wantScript: 0x53, haveScript: 0x5b, distance: 0xa},
8: {wantLang: 0x2b8, haveLang: 0x139, wantScript: 0x58, haveScript: 0x5b, distance: 0xa},
9: {wantLang: 0x304, haveLang: 0x139, wantScript: 0x6f, haveScript: 0x5b, distance: 0xa},
10: {wantLang: 0x331, haveLang: 0x139, wantScript: 0x76, haveScript: 0x5b, distance: 0xa},
11: {wantLang: 0x351, haveLang: 0x139, wantScript: 0x22, haveScript: 0x5b, distance: 0xa},
12: {wantLang: 0x395, haveLang: 0x139, wantScript: 0x83, haveScript: 0x5b, distance: 0xa},
13: {wantLang: 0x39d, haveLang: 0x139, wantScript: 0x36, haveScript: 0x5b, distance: 0xa},
14: {wantLang: 0x3be, haveLang: 0x139, wantScript: 0x5, haveScript: 0x5b, distance: 0xa},
15: {wantLang: 0x3fa, haveLang: 0x139, wantScript: 0x5, haveScript: 0x5b, distance: 0xa},
16: {wantLang: 0x40c, haveLang: 0x139, wantScript: 0xd6, haveScript: 0x5b, distance: 0xa},
17: {wantLang: 0x450, haveLang: 0x139, wantScript: 0xe6, haveScript: 0x5b, distance: 0xa},
18: {wantLang: 0x461, haveLang: 0x139, wantScript: 0xe9, haveScript: 0x5b, distance: 0xa},
19: {wantLang: 0x46f, haveLang: 0x139, wantScript: 0x2c, haveScript: 0x5b, distance: 0xa},
20: {wantLang: 0x476, haveLang: 0x3e2, wantScript: 0x5b, haveScript: 0x20, distance: 0xa},
21: {wantLang: 0x4b4, haveLang: 0x139, wantScript: 0x5, haveScript: 0x5b, distance: 0xa},
22: {wantLang: 0x4bc, haveLang: 0x3e2, wantScript: 0x5b, haveScript: 0x20, distance: 0xa},
23: {wantLang: 0x512, haveLang: 0x139, wantScript: 0x3e, haveScript: 0x5b, distance: 0xa},
24: {wantLang: 0x529, haveLang: 0x529, wantScript: 0x3b, haveScript: 0x3c, distance: 0xf},
25: {wantLang: 0x529, haveLang: 0x529, wantScript: 0x3c, haveScript: 0x3b, distance: 0x13},
} // Size: 232 bytes
var matchRegion = []regionIntelligibility{ // 15 elements
0: {lang: 0x3a, script: 0x0, group: 0x4, distance: 0x4},
1: {lang: 0x3a, script: 0x0, group: 0x84, distance: 0x4},
2: {lang: 0x139, script: 0x0, group: 0x1, distance: 0x4},
3: {lang: 0x139, script: 0x0, group: 0x81, distance: 0x4},
4: {lang: 0x13e, script: 0x0, group: 0x3, distance: 0x4},
5: {lang: 0x13e, script: 0x0, group: 0x83, distance: 0x4},
6: {lang: 0x3c0, script: 0x0, group: 0x3, distance: 0x4},
7: {lang: 0x3c0, script: 0x0, group: 0x83, distance: 0x4},
8: {lang: 0x529, script: 0x3c, group: 0x2, distance: 0x4},
9: {lang: 0x529, script: 0x3c, group: 0x82, distance: 0x4},
10: {lang: 0x3a, script: 0x0, group: 0x80, distance: 0x5},
11: {lang: 0x139, script: 0x0, group: 0x80, distance: 0x5},
12: {lang: 0x13e, script: 0x0, group: 0x80, distance: 0x5},
13: {lang: 0x3c0, script: 0x0, group: 0x80, distance: 0x5},
14: {lang: 0x529, script: 0x3c, group: 0x80, distance: 0x5},
} // Size: 114 bytes
// Total table size 1473 bytes (1KiB); checksum: 7BB90B5C

145
vendor/golang.org/x/text/language/tags.go generated vendored Normal file
View File

@ -0,0 +1,145 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import "golang.org/x/text/internal/language/compact"
// TODO: Various sets of commonly use tags and regions.
// MustParse is like Parse, but panics if the given BCP 47 tag cannot be parsed.
// It simplifies safe initialization of Tag values.
func MustParse(s string) Tag {
t, err := Parse(s)
if err != nil {
panic(err)
}
return t
}
// MustParse is like Parse, but panics if the given BCP 47 tag cannot be parsed.
// It simplifies safe initialization of Tag values.
func (c CanonType) MustParse(s string) Tag {
t, err := c.Parse(s)
if err != nil {
panic(err)
}
return t
}
// MustParseBase is like ParseBase, but panics if the given base cannot be parsed.
// It simplifies safe initialization of Base values.
func MustParseBase(s string) Base {
b, err := ParseBase(s)
if err != nil {
panic(err)
}
return b
}
// MustParseScript is like ParseScript, but panics if the given script cannot be
// parsed. It simplifies safe initialization of Script values.
func MustParseScript(s string) Script {
scr, err := ParseScript(s)
if err != nil {
panic(err)
}
return scr
}
// MustParseRegion is like ParseRegion, but panics if the given region cannot be
// parsed. It simplifies safe initialization of Region values.
func MustParseRegion(s string) Region {
r, err := ParseRegion(s)
if err != nil {
panic(err)
}
return r
}
var (
und = Tag{}
Und Tag = Tag{}
Afrikaans Tag = Tag(compact.Afrikaans)
Amharic Tag = Tag(compact.Amharic)
Arabic Tag = Tag(compact.Arabic)
ModernStandardArabic Tag = Tag(compact.ModernStandardArabic)
Azerbaijani Tag = Tag(compact.Azerbaijani)
Bulgarian Tag = Tag(compact.Bulgarian)
Bengali Tag = Tag(compact.Bengali)
Catalan Tag = Tag(compact.Catalan)
Czech Tag = Tag(compact.Czech)
Danish Tag = Tag(compact.Danish)
German Tag = Tag(compact.German)
Greek Tag = Tag(compact.Greek)
English Tag = Tag(compact.English)
AmericanEnglish Tag = Tag(compact.AmericanEnglish)
BritishEnglish Tag = Tag(compact.BritishEnglish)
Spanish Tag = Tag(compact.Spanish)
EuropeanSpanish Tag = Tag(compact.EuropeanSpanish)
LatinAmericanSpanish Tag = Tag(compact.LatinAmericanSpanish)
Estonian Tag = Tag(compact.Estonian)
Persian Tag = Tag(compact.Persian)
Finnish Tag = Tag(compact.Finnish)
Filipino Tag = Tag(compact.Filipino)
French Tag = Tag(compact.French)
CanadianFrench Tag = Tag(compact.CanadianFrench)
Gujarati Tag = Tag(compact.Gujarati)
Hebrew Tag = Tag(compact.Hebrew)
Hindi Tag = Tag(compact.Hindi)
Croatian Tag = Tag(compact.Croatian)
Hungarian Tag = Tag(compact.Hungarian)
Armenian Tag = Tag(compact.Armenian)
Indonesian Tag = Tag(compact.Indonesian)
Icelandic Tag = Tag(compact.Icelandic)
Italian Tag = Tag(compact.Italian)
Japanese Tag = Tag(compact.Japanese)
Georgian Tag = Tag(compact.Georgian)
Kazakh Tag = Tag(compact.Kazakh)
Khmer Tag = Tag(compact.Khmer)
Kannada Tag = Tag(compact.Kannada)
Korean Tag = Tag(compact.Korean)
Kirghiz Tag = Tag(compact.Kirghiz)
Lao Tag = Tag(compact.Lao)
Lithuanian Tag = Tag(compact.Lithuanian)
Latvian Tag = Tag(compact.Latvian)
Macedonian Tag = Tag(compact.Macedonian)
Malayalam Tag = Tag(compact.Malayalam)
Mongolian Tag = Tag(compact.Mongolian)
Marathi Tag = Tag(compact.Marathi)
Malay Tag = Tag(compact.Malay)
Burmese Tag = Tag(compact.Burmese)
Nepali Tag = Tag(compact.Nepali)
Dutch Tag = Tag(compact.Dutch)
Norwegian Tag = Tag(compact.Norwegian)
Punjabi Tag = Tag(compact.Punjabi)
Polish Tag = Tag(compact.Polish)
Portuguese Tag = Tag(compact.Portuguese)
BrazilianPortuguese Tag = Tag(compact.BrazilianPortuguese)
EuropeanPortuguese Tag = Tag(compact.EuropeanPortuguese)
Romanian Tag = Tag(compact.Romanian)
Russian Tag = Tag(compact.Russian)
Sinhala Tag = Tag(compact.Sinhala)
Slovak Tag = Tag(compact.Slovak)
Slovenian Tag = Tag(compact.Slovenian)
Albanian Tag = Tag(compact.Albanian)
Serbian Tag = Tag(compact.Serbian)
SerbianLatin Tag = Tag(compact.SerbianLatin)
Swedish Tag = Tag(compact.Swedish)
Swahili Tag = Tag(compact.Swahili)
Tamil Tag = Tag(compact.Tamil)
Telugu Tag = Tag(compact.Telugu)
Thai Tag = Tag(compact.Thai)
Turkish Tag = Tag(compact.Turkish)
Ukrainian Tag = Tag(compact.Ukrainian)
Urdu Tag = Tag(compact.Urdu)
Uzbek Tag = Tag(compact.Uzbek)
Vietnamese Tag = Tag(compact.Vietnamese)
Chinese Tag = Tag(compact.Chinese)
SimplifiedChinese Tag = Tag(compact.SimplifiedChinese)
TraditionalChinese Tag = Tag(compact.TraditionalChinese)
Zulu Tag = Tag(compact.Zulu)
)

36
vendor/golang.org/x/text/message/catalog.go generated vendored Normal file
View File

@ -0,0 +1,36 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package message
// TODO: some types in this file will need to be made public at some time.
// Documentation and method names will reflect this by using the exported name.
import (
"golang.org/x/text/language"
"golang.org/x/text/message/catalog"
)
// MatchLanguage reports the matched tag obtained from language.MatchStrings for
// the Matcher of the DefaultCatalog.
func MatchLanguage(preferred ...string) language.Tag {
c := DefaultCatalog
tag, _ := language.MatchStrings(c.Matcher(), preferred...)
return tag
}
// DefaultCatalog is used by SetString.
var DefaultCatalog catalog.Catalog = defaultCatalog
var defaultCatalog = catalog.NewBuilder()
// SetString calls SetString on the initial default Catalog.
func SetString(tag language.Tag, key string, msg string) error {
return defaultCatalog.SetString(tag, key, msg)
}
// Set calls Set on the initial default Catalog.
func Set(tag language.Tag, key string, msg ...catalog.Message) error {
return defaultCatalog.Set(tag, key, msg...)
}

365
vendor/golang.org/x/text/message/catalog/catalog.go generated vendored Normal file
View File

@ -0,0 +1,365 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package catalog defines collections of translated format strings.
//
// This package mostly defines types for populating catalogs with messages. The
// catmsg package contains further definitions for creating custom message and
// dictionary types as well as packages that use Catalogs.
//
// Package catalog defines various interfaces: Dictionary, Loader, and Message.
// A Dictionary maintains a set of translations of format strings for a single
// language. The Loader interface defines a source of dictionaries. A
// translation of a format string is represented by a Message.
//
// # Catalogs
//
// A Catalog defines a programmatic interface for setting message translations.
// It maintains a set of per-language dictionaries with translations for a set
// of keys. For message translation to function properly, a translation should
// be defined for each key for each supported language. A dictionary may be
// underspecified, though, if there is a parent language that already defines
// the key. For example, a Dictionary for "en-GB" could leave out entries that
// are identical to those in a dictionary for "en".
//
// # Messages
//
// A Message is a format string which varies on the value of substitution
// variables. For instance, to indicate the number of results one could want "no
// results" if there are none, "1 result" if there is 1, and "%d results" for
// any other number. Catalog is agnostic to the kind of format strings that are
// used: for instance, messages can follow either the printf-style substitution
// from package fmt or use templates.
//
// A Message does not substitute arguments in the format string. This job is
// reserved for packages that render strings, such as message, that use Catalogs
// to selected string. This separation of concerns allows Catalog to be used to
// store any kind of formatting strings.
//
// # Selecting messages based on linguistic features of substitution arguments
//
// Messages may vary based on any linguistic features of the argument values.
// The most common one is plural form, but others exist.
//
// Selection messages are provided in packages that provide support for a
// specific linguistic feature. The following snippet uses plural.Selectf:
//
// catalog.Set(language.English, "You are %d minute(s) late.",
// plural.Selectf(1, "",
// plural.One, "You are 1 minute late.",
// plural.Other, "You are %d minutes late."))
//
// In this example, a message is stored in the Catalog where one of two messages
// is selected based on the first argument, a number. The first message is
// selected if the argument is singular (identified by the selector "one") and
// the second message is selected in all other cases. The selectors are defined
// by the plural rules defined in CLDR. The selector "other" is special and will
// always match. Each language always defines one of the linguistic categories
// to be "other." For English, singular is "one" and plural is "other".
//
// Selects can be nested. This allows selecting sentences based on features of
// multiple arguments or multiple linguistic properties of a single argument.
//
// # String interpolation
//
// There is often a lot of commonality between the possible variants of a
// message. For instance, in the example above the word "minute" varies based on
// the plural catogory of the argument, but the rest of the sentence is
// identical. Using interpolation the above message can be rewritten as:
//
// catalog.Set(language.English, "You are %d minute(s) late.",
// catalog.Var("minutes",
// plural.Selectf(1, "", plural.One, "minute", plural.Other, "minutes")),
// catalog.String("You are %[1]d ${minutes} late."))
//
// Var is defined to return the variable name if the message does not yield a
// match. This allows us to further simplify this snippet to
//
// catalog.Set(language.English, "You are %d minute(s) late.",
// catalog.Var("minutes", plural.Selectf(1, "", plural.One, "minute")),
// catalog.String("You are %d ${minutes} late."))
//
// Overall this is still only a minor improvement, but things can get a lot more
// unwieldy if more than one linguistic feature is used to determine a message
// variant. Consider the following example:
//
// // argument 1: list of hosts, argument 2: list of guests
// catalog.Set(language.English, "%[1]v invite(s) %[2]v to their party.",
// catalog.Var("their",
// plural.Selectf(1, ""
// plural.One, gender.Select(1, "female", "her", "other", "his"))),
// catalog.Var("invites", plural.Selectf(1, "", plural.One, "invite"))
// catalog.String("%[1]v ${invites} %[2]v to ${their} party.")),
//
// Without variable substitution, this would have to be written as
//
// // argument 1: list of hosts, argument 2: list of guests
// catalog.Set(language.English, "%[1]v invite(s) %[2]v to their party.",
// plural.Selectf(1, "",
// plural.One, gender.Select(1,
// "female", "%[1]v invites %[2]v to her party."
// "other", "%[1]v invites %[2]v to his party."),
// plural.Other, "%[1]v invites %[2]v to their party."))
//
// Not necessarily shorter, but using variables there is less duplication and
// the messages are more maintenance friendly. Moreover, languages may have up
// to six plural forms. This makes the use of variables more welcome.
//
// Different messages using the same inflections can reuse variables by moving
// them to macros. Using macros we can rewrite the message as:
//
// // argument 1: list of hosts, argument 2: list of guests
// catalog.SetString(language.English, "%[1]v invite(s) %[2]v to their party.",
// "%[1]v ${invites(1)} %[2]v to ${their(1)} party.")
//
// Where the following macros were defined separately.
//
// catalog.SetMacro(language.English, "invites", plural.Selectf(1, "",
// plural.One, "invite"))
// catalog.SetMacro(language.English, "their", plural.Selectf(1, "",
// plural.One, gender.Select(1, "female", "her", "other", "his"))),
//
// Placeholders use parentheses and the arguments to invoke a macro.
//
// # Looking up messages
//
// Message lookup using Catalogs is typically only done by specialized packages
// and is not something the user should be concerned with. For instance, to
// express the tardiness of a user using the related message we defined earlier,
// the user may use the package message like so:
//
// p := message.NewPrinter(language.English)
// p.Printf("You are %d minute(s) late.", 5)
//
// Which would print:
//
// You are 5 minutes late.
//
// This package is UNDER CONSTRUCTION and its API may change.
package catalog // import "golang.org/x/text/message/catalog"
// TODO:
// Some way to freeze a catalog.
// - Locking on each lockup turns out to be about 50% of the total running time
// for some of the benchmarks in the message package.
// Consider these:
// - Sequence type to support sequences in user-defined messages.
// - Garbage collection: Remove dictionaries that can no longer be reached
// as other dictionaries have been added that cover all possible keys.
import (
"errors"
"fmt"
"golang.org/x/text/internal"
"golang.org/x/text/internal/catmsg"
"golang.org/x/text/language"
)
// A Catalog allows lookup of translated messages.
type Catalog interface {
// Languages returns all languages for which the Catalog contains variants.
Languages() []language.Tag
// Matcher returns a Matcher for languages from this Catalog.
Matcher() language.Matcher
// A Context is used for evaluating Messages.
Context(tag language.Tag, r catmsg.Renderer) *Context
// This method also makes Catalog a private interface.
lookup(tag language.Tag, key string) (data string, ok bool)
}
// NewFromMap creates a Catalog from the given map. If a Dictionary is
// underspecified the entry is retrieved from a parent language.
func NewFromMap(dictionaries map[string]Dictionary, opts ...Option) (Catalog, error) {
options := options{}
for _, o := range opts {
o(&options)
}
c := &catalog{
dicts: map[language.Tag]Dictionary{},
}
_, hasFallback := dictionaries[options.fallback.String()]
if hasFallback {
// TODO: Should it be okay to not have a fallback language?
// Catalog generators could enforce there is always a fallback.
c.langs = append(c.langs, options.fallback)
}
for lang, dict := range dictionaries {
tag, err := language.Parse(lang)
if err != nil {
return nil, fmt.Errorf("catalog: invalid language tag %q", lang)
}
if _, ok := c.dicts[tag]; ok {
return nil, fmt.Errorf("catalog: duplicate entry for tag %q after normalization", tag)
}
c.dicts[tag] = dict
if !hasFallback || tag != options.fallback {
c.langs = append(c.langs, tag)
}
}
if hasFallback {
internal.SortTags(c.langs[1:])
} else {
internal.SortTags(c.langs)
}
c.matcher = language.NewMatcher(c.langs)
return c, nil
}
// A Dictionary is a source of translations for a single language.
type Dictionary interface {
// Lookup returns a message compiled with catmsg.Compile for the given key.
// It returns false for ok if such a message could not be found.
Lookup(key string) (data string, ok bool)
}
type catalog struct {
langs []language.Tag
dicts map[language.Tag]Dictionary
macros store
matcher language.Matcher
}
func (c *catalog) Languages() []language.Tag { return c.langs }
func (c *catalog) Matcher() language.Matcher { return c.matcher }
func (c *catalog) lookup(tag language.Tag, key string) (data string, ok bool) {
for ; ; tag = tag.Parent() {
if dict, ok := c.dicts[tag]; ok {
if data, ok := dict.Lookup(key); ok {
return data, true
}
}
if tag == language.Und {
break
}
}
return "", false
}
// Context returns a Context for formatting messages.
// Only one Message may be formatted per context at any given time.
func (c *catalog) Context(tag language.Tag, r catmsg.Renderer) *Context {
return &Context{
cat: c,
tag: tag,
dec: catmsg.NewDecoder(tag, r, &dict{&c.macros, tag}),
}
}
// A Builder allows building a Catalog programmatically.
type Builder struct {
options
matcher language.Matcher
index store
macros store
}
type options struct {
fallback language.Tag
}
// An Option configures Catalog behavior.
type Option func(*options)
// Fallback specifies the default fallback language. The default is Und.
func Fallback(tag language.Tag) Option {
return func(o *options) { o.fallback = tag }
}
// TODO:
// // Catalogs specifies one or more sources for a Catalog.
// // Lookups are in order.
// // This can be changed inserting a Catalog used for setting, which implements
// // Loader, used for setting in the chain.
// func Catalogs(d ...Loader) Option {
// return nil
// }
//
// func Delims(start, end string) Option {}
//
// func Dict(tag language.Tag, d ...Dictionary) Option
// NewBuilder returns an empty mutable Catalog.
func NewBuilder(opts ...Option) *Builder {
c := &Builder{}
for _, o := range opts {
o(&c.options)
}
return c
}
// SetString is shorthand for Set(tag, key, String(msg)).
func (c *Builder) SetString(tag language.Tag, key string, msg string) error {
return c.set(tag, key, &c.index, String(msg))
}
// Set sets the translation for the given language and key.
//
// When evaluation this message, the first Message in the sequence to msgs to
// evaluate to a string will be the message returned.
func (c *Builder) Set(tag language.Tag, key string, msg ...Message) error {
return c.set(tag, key, &c.index, msg...)
}
// SetMacro defines a Message that may be substituted in another message.
// The arguments to a macro Message are passed as arguments in the
// placeholder the form "${foo(arg1, arg2)}".
func (c *Builder) SetMacro(tag language.Tag, name string, msg ...Message) error {
return c.set(tag, name, &c.macros, msg...)
}
// ErrNotFound indicates there was no message for the given key.
var ErrNotFound = errors.New("catalog: message not found")
// String specifies a plain message string. It can be used as fallback if no
// other strings match or as a simple standalone message.
//
// It is an error to pass more than one String in a message sequence.
func String(name string) Message {
return catmsg.String(name)
}
// Var sets a variable that may be substituted in formatting patterns using
// named substitution of the form "${name}". The name argument is used as a
// fallback if the statements do not produce a match. The statement sequence may
// not contain any Var calls.
//
// The name passed to a Var must be unique within message sequence.
func Var(name string, msg ...Message) Message {
return &catmsg.Var{Name: name, Message: firstInSequence(msg)}
}
// Context returns a Context for formatting messages.
// Only one Message may be formatted per context at any given time.
func (b *Builder) Context(tag language.Tag, r catmsg.Renderer) *Context {
return &Context{
cat: b,
tag: tag,
dec: catmsg.NewDecoder(tag, r, &dict{&b.macros, tag}),
}
}
// A Context is used for evaluating Messages.
// Only one Message may be formatted per context at any given time.
type Context struct {
cat Catalog
tag language.Tag // TODO: use compact index.
dec *catmsg.Decoder
}
// Execute looks up and executes the message with the given key.
// It returns ErrNotFound if no message could be found in the index.
func (c *Context) Execute(key string) error {
data, ok := c.cat.lookup(c.tag, key)
if !ok {
return ErrNotFound
}
return c.dec.Execute(data)
}

129
vendor/golang.org/x/text/message/catalog/dict.go generated vendored Normal file
View File

@ -0,0 +1,129 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package catalog
import (
"sync"
"golang.org/x/text/internal"
"golang.org/x/text/internal/catmsg"
"golang.org/x/text/language"
)
// TODO:
// Dictionary returns a Dictionary that returns the first Message, using the
// given language tag, that matches:
// 1. the last one registered by one of the Set methods
// 2. returned by one of the Loaders
// 3. repeat from 1. using the parent language
// This approach allows messages to be underspecified.
// func (c *Catalog) Dictionary(tag language.Tag) (Dictionary, error) {
// // TODO: verify dictionary exists.
// return &dict{&c.index, tag}, nil
// }
type dict struct {
s *store
tag language.Tag // TODO: make compact tag.
}
func (d *dict) Lookup(key string) (data string, ok bool) {
return d.s.lookup(d.tag, key)
}
func (b *Builder) lookup(tag language.Tag, key string) (data string, ok bool) {
return b.index.lookup(tag, key)
}
func (c *Builder) set(tag language.Tag, key string, s *store, msg ...Message) error {
data, err := catmsg.Compile(tag, &dict{&c.macros, tag}, firstInSequence(msg))
s.mutex.Lock()
defer s.mutex.Unlock()
m := s.index[tag]
if m == nil {
m = msgMap{}
if s.index == nil {
s.index = map[language.Tag]msgMap{}
}
c.matcher = nil
s.index[tag] = m
}
m[key] = data
return err
}
func (c *Builder) Matcher() language.Matcher {
c.index.mutex.RLock()
m := c.matcher
c.index.mutex.RUnlock()
if m != nil {
return m
}
c.index.mutex.Lock()
if c.matcher == nil {
c.matcher = language.NewMatcher(c.unlockedLanguages())
}
m = c.matcher
c.index.mutex.Unlock()
return m
}
type store struct {
mutex sync.RWMutex
index map[language.Tag]msgMap
}
type msgMap map[string]string
func (s *store) lookup(tag language.Tag, key string) (data string, ok bool) {
s.mutex.RLock()
defer s.mutex.RUnlock()
for ; ; tag = tag.Parent() {
if msgs, ok := s.index[tag]; ok {
if msg, ok := msgs[key]; ok {
return msg, true
}
}
if tag == language.Und {
break
}
}
return "", false
}
// Languages returns all languages for which the Catalog contains variants.
func (b *Builder) Languages() []language.Tag {
s := &b.index
s.mutex.RLock()
defer s.mutex.RUnlock()
return b.unlockedLanguages()
}
func (b *Builder) unlockedLanguages() []language.Tag {
s := &b.index
if len(s.index) == 0 {
return nil
}
tags := make([]language.Tag, 0, len(s.index))
_, hasFallback := s.index[b.options.fallback]
offset := 0
if hasFallback {
tags = append(tags, b.options.fallback)
offset = 1
}
for t := range s.index {
if t != b.options.fallback {
tags = append(tags, t)
}
}
internal.SortTags(tags[offset:])
return tags
}

16
vendor/golang.org/x/text/message/catalog/go19.go generated vendored Normal file
View File

@ -0,0 +1,16 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.9
// +build go1.9
package catalog
import "golang.org/x/text/internal/catmsg"
// A Message holds a collection of translations for the same phrase that may
// vary based on the values of substitution arguments.
type Message = catmsg.Message
type firstInSequence = catmsg.FirstOf

24
vendor/golang.org/x/text/message/catalog/gopre19.go generated vendored Normal file
View File

@ -0,0 +1,24 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !go1.9
// +build !go1.9
package catalog
import "golang.org/x/text/internal/catmsg"
// A Message holds a collection of translations for the same phrase that may
// vary based on the values of substitution arguments.
type Message interface {
catmsg.Message
}
func firstInSequence(m []Message) catmsg.Message {
a := []catmsg.Message{}
for _, m := range m {
a = append(a, m)
}
return catmsg.FirstOf(a)
}

99
vendor/golang.org/x/text/message/doc.go generated vendored Normal file
View File

@ -0,0 +1,99 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package message implements formatted I/O for localized strings with functions
// analogous to the fmt's print functions. It is a drop-in replacement for fmt.
//
// # Localized Formatting
//
// A format string can be localized by replacing any of the print functions of
// fmt with an equivalent call to a Printer.
//
// p := message.NewPrinter(message.MatchLanguage("en"))
// p.Println(123456.78) // Prints 123,456.78
//
// p.Printf("%d ducks in a row", 4331) // Prints 4,331 ducks in a row
//
// p := message.NewPrinter(message.MatchLanguage("nl"))
// p.Printf("Hoogte: %.1f meter", 1244.9) // Prints Hoogte: 1,244.9 meter
//
// p := message.NewPrinter(message.MatchLanguage("bn"))
// p.Println(123456.78) // Prints ১,২৩,৪৫৬.৭৮
//
// Printer currently supports numbers and specialized types for which packages
// exist in x/text. Other builtin types such as time.Time and slices are
// planned.
//
// Format strings largely have the same meaning as with fmt with the following
// notable exceptions:
// - flag # always resorts to fmt for printing
// - verb 'f', 'e', 'g', 'd' use localized formatting unless the '#' flag is
// specified.
// - verb 'm' inserts a translation of a string argument.
//
// See package fmt for more options.
//
// # Translation
//
// The format strings that are passed to Printf, Sprintf, Fprintf, or Errorf
// are used as keys to look up translations for the specified languages.
// More on how these need to be specified below.
//
// One can use arbitrary keys to distinguish between otherwise ambiguous
// strings:
//
// p := message.NewPrinter(language.English)
// p.Printf("archive(noun)") // Prints "archive"
// p.Printf("archive(verb)") // Prints "archive"
//
// p := message.NewPrinter(language.German)
// p.Printf("archive(noun)") // Prints "Archiv"
// p.Printf("archive(verb)") // Prints "archivieren"
//
// To retain the fallback functionality, use Key:
//
// p.Printf(message.Key("archive(noun)", "archive"))
// p.Printf(message.Key("archive(verb)", "archive"))
//
// # Translation Pipeline
//
// Format strings that contain text need to be translated to support different
// locales. The first step is to extract strings that need to be translated.
//
// 1. Install gotext
//
// go get -u golang.org/x/text/cmd/gotext
// gotext -help
//
// 2. Mark strings in your source to be translated by using message.Printer,
// instead of the functions of the fmt package.
//
// 3. Extract the strings from your source
//
// gotext extract
//
// The output will be written to the textdata directory.
//
// 4. Send the files for translation
//
// It is planned to support multiple formats, but for now one will have to
// rewrite the JSON output to the desired format.
//
// 5. Inject translations into program
//
// 6. Repeat from 2
//
// Right now this has to be done programmatically with calls to Set or
// SetString. These functions as well as the methods defined in
// see also package golang.org/x/text/message/catalog can be used to implement
// either dynamic or static loading of messages.
//
// # Plural and Gender Forms
//
// Translated messages can vary based on the plural and gender forms of
// substitution values. In general, it is up to the translators to provide
// alternative translations for such forms. See the packages in
// golang.org/x/text/feature and golang.org/x/text/message/catalog for more
// information.
package message

510
vendor/golang.org/x/text/message/format.go generated vendored Normal file
View File

@ -0,0 +1,510 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package message
import (
"bytes"
"strconv"
"unicode/utf8"
"golang.org/x/text/internal/format"
)
const (
ldigits = "0123456789abcdefx"
udigits = "0123456789ABCDEFX"
)
const (
signed = true
unsigned = false
)
// A formatInfo is the raw formatter used by Printf etc.
// It prints into a buffer that must be set up separately.
type formatInfo struct {
buf *bytes.Buffer
format.Parser
// intbuf is large enough to store %b of an int64 with a sign and
// avoids padding at the end of the struct on 32 bit architectures.
intbuf [68]byte
}
func (f *formatInfo) init(buf *bytes.Buffer) {
f.ClearFlags()
f.buf = buf
}
// writePadding generates n bytes of padding.
func (f *formatInfo) writePadding(n int) {
if n <= 0 { // No padding bytes needed.
return
}
f.buf.Grow(n)
// Decide which byte the padding should be filled with.
padByte := byte(' ')
if f.Zero {
padByte = byte('0')
}
// Fill padding with padByte.
for i := 0; i < n; i++ {
f.buf.WriteByte(padByte) // TODO: make more efficient.
}
}
// pad appends b to f.buf, padded on left (!f.minus) or right (f.minus).
func (f *formatInfo) pad(b []byte) {
if !f.WidthPresent || f.Width == 0 {
f.buf.Write(b)
return
}
width := f.Width - utf8.RuneCount(b)
if !f.Minus {
// left padding
f.writePadding(width)
f.buf.Write(b)
} else {
// right padding
f.buf.Write(b)
f.writePadding(width)
}
}
// padString appends s to f.buf, padded on left (!f.minus) or right (f.minus).
func (f *formatInfo) padString(s string) {
if !f.WidthPresent || f.Width == 0 {
f.buf.WriteString(s)
return
}
width := f.Width - utf8.RuneCountInString(s)
if !f.Minus {
// left padding
f.writePadding(width)
f.buf.WriteString(s)
} else {
// right padding
f.buf.WriteString(s)
f.writePadding(width)
}
}
// fmt_boolean formats a boolean.
func (f *formatInfo) fmt_boolean(v bool) {
if v {
f.padString("true")
} else {
f.padString("false")
}
}
// fmt_unicode formats a uint64 as "U+0078" or with f.sharp set as "U+0078 'x'".
func (f *formatInfo) fmt_unicode(u uint64) {
buf := f.intbuf[0:]
// With default precision set the maximum needed buf length is 18
// for formatting -1 with %#U ("U+FFFFFFFFFFFFFFFF") which fits
// into the already allocated intbuf with a capacity of 68 bytes.
prec := 4
if f.PrecPresent && f.Prec > 4 {
prec = f.Prec
// Compute space needed for "U+" , number, " '", character, "'".
width := 2 + prec + 2 + utf8.UTFMax + 1
if width > len(buf) {
buf = make([]byte, width)
}
}
// Format into buf, ending at buf[i]. Formatting numbers is easier right-to-left.
i := len(buf)
// For %#U we want to add a space and a quoted character at the end of the buffer.
if f.Sharp && u <= utf8.MaxRune && strconv.IsPrint(rune(u)) {
i--
buf[i] = '\''
i -= utf8.RuneLen(rune(u))
utf8.EncodeRune(buf[i:], rune(u))
i--
buf[i] = '\''
i--
buf[i] = ' '
}
// Format the Unicode code point u as a hexadecimal number.
for u >= 16 {
i--
buf[i] = udigits[u&0xF]
prec--
u >>= 4
}
i--
buf[i] = udigits[u]
prec--
// Add zeros in front of the number until requested precision is reached.
for prec > 0 {
i--
buf[i] = '0'
prec--
}
// Add a leading "U+".
i--
buf[i] = '+'
i--
buf[i] = 'U'
oldZero := f.Zero
f.Zero = false
f.pad(buf[i:])
f.Zero = oldZero
}
// fmt_integer formats signed and unsigned integers.
func (f *formatInfo) fmt_integer(u uint64, base int, isSigned bool, digits string) {
negative := isSigned && int64(u) < 0
if negative {
u = -u
}
buf := f.intbuf[0:]
// The already allocated f.intbuf with a capacity of 68 bytes
// is large enough for integer formatting when no precision or width is set.
if f.WidthPresent || f.PrecPresent {
// Account 3 extra bytes for possible addition of a sign and "0x".
width := 3 + f.Width + f.Prec // wid and prec are always positive.
if width > len(buf) {
// We're going to need a bigger boat.
buf = make([]byte, width)
}
}
// Two ways to ask for extra leading zero digits: %.3d or %03d.
// If both are specified the f.zero flag is ignored and
// padding with spaces is used instead.
prec := 0
if f.PrecPresent {
prec = f.Prec
// Precision of 0 and value of 0 means "print nothing" but padding.
if prec == 0 && u == 0 {
oldZero := f.Zero
f.Zero = false
f.writePadding(f.Width)
f.Zero = oldZero
return
}
} else if f.Zero && f.WidthPresent {
prec = f.Width
if negative || f.Plus || f.Space {
prec-- // leave room for sign
}
}
// Because printing is easier right-to-left: format u into buf, ending at buf[i].
// We could make things marginally faster by splitting the 32-bit case out
// into a separate block but it's not worth the duplication, so u has 64 bits.
i := len(buf)
// Use constants for the division and modulo for more efficient code.
// Switch cases ordered by popularity.
switch base {
case 10:
for u >= 10 {
i--
next := u / 10
buf[i] = byte('0' + u - next*10)
u = next
}
case 16:
for u >= 16 {
i--
buf[i] = digits[u&0xF]
u >>= 4
}
case 8:
for u >= 8 {
i--
buf[i] = byte('0' + u&7)
u >>= 3
}
case 2:
for u >= 2 {
i--
buf[i] = byte('0' + u&1)
u >>= 1
}
default:
panic("fmt: unknown base; can't happen")
}
i--
buf[i] = digits[u]
for i > 0 && prec > len(buf)-i {
i--
buf[i] = '0'
}
// Various prefixes: 0x, -, etc.
if f.Sharp {
switch base {
case 8:
if buf[i] != '0' {
i--
buf[i] = '0'
}
case 16:
// Add a leading 0x or 0X.
i--
buf[i] = digits[16]
i--
buf[i] = '0'
}
}
if negative {
i--
buf[i] = '-'
} else if f.Plus {
i--
buf[i] = '+'
} else if f.Space {
i--
buf[i] = ' '
}
// Left padding with zeros has already been handled like precision earlier
// or the f.zero flag is ignored due to an explicitly set precision.
oldZero := f.Zero
f.Zero = false
f.pad(buf[i:])
f.Zero = oldZero
}
// truncate truncates the string to the specified precision, if present.
func (f *formatInfo) truncate(s string) string {
if f.PrecPresent {
n := f.Prec
for i := range s {
n--
if n < 0 {
return s[:i]
}
}
}
return s
}
// fmt_s formats a string.
func (f *formatInfo) fmt_s(s string) {
s = f.truncate(s)
f.padString(s)
}
// fmt_sbx formats a string or byte slice as a hexadecimal encoding of its bytes.
func (f *formatInfo) fmt_sbx(s string, b []byte, digits string) {
length := len(b)
if b == nil {
// No byte slice present. Assume string s should be encoded.
length = len(s)
}
// Set length to not process more bytes than the precision demands.
if f.PrecPresent && f.Prec < length {
length = f.Prec
}
// Compute width of the encoding taking into account the f.sharp and f.space flag.
width := 2 * length
if width > 0 {
if f.Space {
// Each element encoded by two hexadecimals will get a leading 0x or 0X.
if f.Sharp {
width *= 2
}
// Elements will be separated by a space.
width += length - 1
} else if f.Sharp {
// Only a leading 0x or 0X will be added for the whole string.
width += 2
}
} else { // The byte slice or string that should be encoded is empty.
if f.WidthPresent {
f.writePadding(f.Width)
}
return
}
// Handle padding to the left.
if f.WidthPresent && f.Width > width && !f.Minus {
f.writePadding(f.Width - width)
}
// Write the encoding directly into the output buffer.
buf := f.buf
if f.Sharp {
// Add leading 0x or 0X.
buf.WriteByte('0')
buf.WriteByte(digits[16])
}
var c byte
for i := 0; i < length; i++ {
if f.Space && i > 0 {
// Separate elements with a space.
buf.WriteByte(' ')
if f.Sharp {
// Add leading 0x or 0X for each element.
buf.WriteByte('0')
buf.WriteByte(digits[16])
}
}
if b != nil {
c = b[i] // Take a byte from the input byte slice.
} else {
c = s[i] // Take a byte from the input string.
}
// Encode each byte as two hexadecimal digits.
buf.WriteByte(digits[c>>4])
buf.WriteByte(digits[c&0xF])
}
// Handle padding to the right.
if f.WidthPresent && f.Width > width && f.Minus {
f.writePadding(f.Width - width)
}
}
// fmt_sx formats a string as a hexadecimal encoding of its bytes.
func (f *formatInfo) fmt_sx(s, digits string) {
f.fmt_sbx(s, nil, digits)
}
// fmt_bx formats a byte slice as a hexadecimal encoding of its bytes.
func (f *formatInfo) fmt_bx(b []byte, digits string) {
f.fmt_sbx("", b, digits)
}
// fmt_q formats a string as a double-quoted, escaped Go string constant.
// If f.sharp is set a raw (backquoted) string may be returned instead
// if the string does not contain any control characters other than tab.
func (f *formatInfo) fmt_q(s string) {
s = f.truncate(s)
if f.Sharp && strconv.CanBackquote(s) {
f.padString("`" + s + "`")
return
}
buf := f.intbuf[:0]
if f.Plus {
f.pad(strconv.AppendQuoteToASCII(buf, s))
} else {
f.pad(strconv.AppendQuote(buf, s))
}
}
// fmt_c formats an integer as a Unicode character.
// If the character is not valid Unicode, it will print '\ufffd'.
func (f *formatInfo) fmt_c(c uint64) {
r := rune(c)
if c > utf8.MaxRune {
r = utf8.RuneError
}
buf := f.intbuf[:0]
w := utf8.EncodeRune(buf[:utf8.UTFMax], r)
f.pad(buf[:w])
}
// fmt_qc formats an integer as a single-quoted, escaped Go character constant.
// If the character is not valid Unicode, it will print '\ufffd'.
func (f *formatInfo) fmt_qc(c uint64) {
r := rune(c)
if c > utf8.MaxRune {
r = utf8.RuneError
}
buf := f.intbuf[:0]
if f.Plus {
f.pad(strconv.AppendQuoteRuneToASCII(buf, r))
} else {
f.pad(strconv.AppendQuoteRune(buf, r))
}
}
// fmt_float formats a float64. It assumes that verb is a valid format specifier
// for strconv.AppendFloat and therefore fits into a byte.
func (f *formatInfo) fmt_float(v float64, size int, verb rune, prec int) {
// Explicit precision in format specifier overrules default precision.
if f.PrecPresent {
prec = f.Prec
}
// Format number, reserving space for leading + sign if needed.
num := strconv.AppendFloat(f.intbuf[:1], v, byte(verb), prec, size)
if num[1] == '-' || num[1] == '+' {
num = num[1:]
} else {
num[0] = '+'
}
// f.space means to add a leading space instead of a "+" sign unless
// the sign is explicitly asked for by f.plus.
if f.Space && num[0] == '+' && !f.Plus {
num[0] = ' '
}
// Special handling for infinities and NaN,
// which don't look like a number so shouldn't be padded with zeros.
if num[1] == 'I' || num[1] == 'N' {
oldZero := f.Zero
f.Zero = false
// Remove sign before NaN if not asked for.
if num[1] == 'N' && !f.Space && !f.Plus {
num = num[1:]
}
f.pad(num)
f.Zero = oldZero
return
}
// The sharp flag forces printing a decimal point for non-binary formats
// and retains trailing zeros, which we may need to restore.
if f.Sharp && verb != 'b' {
digits := 0
switch verb {
case 'v', 'g', 'G':
digits = prec
// If no precision is set explicitly use a precision of 6.
if digits == -1 {
digits = 6
}
}
// Buffer pre-allocated with enough room for
// exponent notations of the form "e+123".
var tailBuf [5]byte
tail := tailBuf[:0]
hasDecimalPoint := false
// Starting from i = 1 to skip sign at num[0].
for i := 1; i < len(num); i++ {
switch num[i] {
case '.':
hasDecimalPoint = true
case 'e', 'E':
tail = append(tail, num[i:]...)
num = num[:i]
default:
digits--
}
}
if !hasDecimalPoint {
num = append(num, '.')
}
for digits > 0 {
num = append(num, '0')
digits--
}
num = append(num, tail...)
}
// We want a sign if asked for and if the sign is not positive.
if f.Plus || num[0] != '+' {
// If we're zero padding to the left we want the sign before the leading zeros.
// Achieve this by writing the sign out and then padding the unsigned number.
if f.Zero && f.WidthPresent && f.Width > len(num) {
f.buf.WriteByte(num[0])
f.writePadding(f.Width - len(num))
f.buf.Write(num[1:])
return
}
f.pad(num)
return
}
// No sign to show and the number is positive; just print the unsigned number.
f.pad(num[1:])
}

193
vendor/golang.org/x/text/message/message.go generated vendored Normal file
View File

@ -0,0 +1,193 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package message // import "golang.org/x/text/message"
import (
"io"
"os"
// Include features to facilitate generated catalogs.
_ "golang.org/x/text/feature/plural"
"golang.org/x/text/internal/number"
"golang.org/x/text/language"
"golang.org/x/text/message/catalog"
)
// A Printer implements language-specific formatted I/O analogous to the fmt
// package.
type Printer struct {
// the language
tag language.Tag
toDecimal number.Formatter
toScientific number.Formatter
cat catalog.Catalog
}
type options struct {
cat catalog.Catalog
// TODO:
// - allow %s to print integers in written form (tables are likely too large
// to enable this by default).
// - list behavior
//
}
// An Option defines an option of a Printer.
type Option func(o *options)
// Catalog defines the catalog to be used.
func Catalog(c catalog.Catalog) Option {
return func(o *options) { o.cat = c }
}
// NewPrinter returns a Printer that formats messages tailored to language t.
func NewPrinter(t language.Tag, opts ...Option) *Printer {
options := &options{
cat: DefaultCatalog,
}
for _, o := range opts {
o(options)
}
p := &Printer{
tag: t,
cat: options.cat,
}
p.toDecimal.InitDecimal(t)
p.toScientific.InitScientific(t)
return p
}
// Sprint is like fmt.Sprint, but using language-specific formatting.
func (p *Printer) Sprint(a ...interface{}) string {
pp := newPrinter(p)
pp.doPrint(a)
s := pp.String()
pp.free()
return s
}
// Fprint is like fmt.Fprint, but using language-specific formatting.
func (p *Printer) Fprint(w io.Writer, a ...interface{}) (n int, err error) {
pp := newPrinter(p)
pp.doPrint(a)
n64, err := io.Copy(w, &pp.Buffer)
pp.free()
return int(n64), err
}
// Print is like fmt.Print, but using language-specific formatting.
func (p *Printer) Print(a ...interface{}) (n int, err error) {
return p.Fprint(os.Stdout, a...)
}
// Sprintln is like fmt.Sprintln, but using language-specific formatting.
func (p *Printer) Sprintln(a ...interface{}) string {
pp := newPrinter(p)
pp.doPrintln(a)
s := pp.String()
pp.free()
return s
}
// Fprintln is like fmt.Fprintln, but using language-specific formatting.
func (p *Printer) Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
pp := newPrinter(p)
pp.doPrintln(a)
n64, err := io.Copy(w, &pp.Buffer)
pp.free()
return int(n64), err
}
// Println is like fmt.Println, but using language-specific formatting.
func (p *Printer) Println(a ...interface{}) (n int, err error) {
return p.Fprintln(os.Stdout, a...)
}
// Sprintf is like fmt.Sprintf, but using language-specific formatting.
func (p *Printer) Sprintf(key Reference, a ...interface{}) string {
pp := newPrinter(p)
lookupAndFormat(pp, key, a)
s := pp.String()
pp.free()
return s
}
// Fprintf is like fmt.Fprintf, but using language-specific formatting.
func (p *Printer) Fprintf(w io.Writer, key Reference, a ...interface{}) (n int, err error) {
pp := newPrinter(p)
lookupAndFormat(pp, key, a)
n, err = w.Write(pp.Bytes())
pp.free()
return n, err
}
// Printf is like fmt.Printf, but using language-specific formatting.
func (p *Printer) Printf(key Reference, a ...interface{}) (n int, err error) {
pp := newPrinter(p)
lookupAndFormat(pp, key, a)
n, err = os.Stdout.Write(pp.Bytes())
pp.free()
return n, err
}
func lookupAndFormat(p *printer, r Reference, a []interface{}) {
p.fmt.Reset(a)
var id, msg string
switch v := r.(type) {
case string:
id, msg = v, v
case key:
id, msg = v.id, v.fallback
default:
panic("key argument is not a Reference")
}
if p.catContext.Execute(id) == catalog.ErrNotFound {
if p.catContext.Execute(msg) == catalog.ErrNotFound {
p.Render(msg)
return
}
}
}
type rawPrinter struct {
p *printer
}
func (p rawPrinter) Render(msg string) { p.p.WriteString(msg) }
func (p rawPrinter) Arg(i int) interface{} { return nil }
// Arg implements catmsg.Renderer.
func (p *printer) Arg(i int) interface{} { // TODO, also return "ok" bool
i--
if uint(i) < uint(len(p.fmt.Args)) {
return p.fmt.Args[i]
}
return nil
}
// Render implements catmsg.Renderer.
func (p *printer) Render(msg string) {
p.doPrintf(msg)
}
// A Reference is a string or a message reference.
type Reference interface {
// TODO: also allow []string
}
// Key creates a message Reference for a message where the given id is used for
// message lookup and the fallback is returned when no matches are found.
func Key(id string, fallback string) Reference {
return key{id, fallback}
}
type key struct {
id, fallback string
}

984
vendor/golang.org/x/text/message/print.go generated vendored Normal file
View File

@ -0,0 +1,984 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package message
import (
"bytes"
"fmt" // TODO: consider copying interfaces from package fmt to avoid dependency.
"math"
"reflect"
"sync"
"unicode/utf8"
"golang.org/x/text/internal/format"
"golang.org/x/text/internal/number"
"golang.org/x/text/language"
"golang.org/x/text/message/catalog"
)
// Strings for use with buffer.WriteString.
// This is less overhead than using buffer.Write with byte arrays.
const (
commaSpaceString = ", "
nilAngleString = "<nil>"
nilParenString = "(nil)"
nilString = "nil"
mapString = "map["
percentBangString = "%!"
missingString = "(MISSING)"
badIndexString = "(BADINDEX)"
panicString = "(PANIC="
extraString = "%!(EXTRA "
badWidthString = "%!(BADWIDTH)"
badPrecString = "%!(BADPREC)"
noVerbString = "%!(NOVERB)"
invReflectString = "<invalid reflect.Value>"
)
var printerPool = sync.Pool{
New: func() interface{} { return new(printer) },
}
// newPrinter allocates a new printer struct or grabs a cached one.
func newPrinter(pp *Printer) *printer {
p := printerPool.Get().(*printer)
p.Printer = *pp
// TODO: cache most of the following call.
p.catContext = pp.cat.Context(pp.tag, p)
p.panicking = false
p.erroring = false
p.fmt.init(&p.Buffer)
return p
}
// free saves used printer structs in printerFree; avoids an allocation per invocation.
func (p *printer) free() {
p.Buffer.Reset()
p.arg = nil
p.value = reflect.Value{}
printerPool.Put(p)
}
// printer is used to store a printer's state.
// It implements "golang.org/x/text/internal/format".State.
type printer struct {
Printer
// the context for looking up message translations
catContext *catalog.Context
// buffer for accumulating output.
bytes.Buffer
// arg holds the current item, as an interface{}.
arg interface{}
// value is used instead of arg for reflect values.
value reflect.Value
// fmt is used to format basic items such as integers or strings.
fmt formatInfo
// panicking is set by catchPanic to avoid infinite panic, recover, panic, ... recursion.
panicking bool
// erroring is set when printing an error string to guard against calling handleMethods.
erroring bool
}
// Language implements "golang.org/x/text/internal/format".State.
func (p *printer) Language() language.Tag { return p.tag }
func (p *printer) Width() (wid int, ok bool) { return p.fmt.Width, p.fmt.WidthPresent }
func (p *printer) Precision() (prec int, ok bool) { return p.fmt.Prec, p.fmt.PrecPresent }
func (p *printer) Flag(b int) bool {
switch b {
case '-':
return p.fmt.Minus
case '+':
return p.fmt.Plus || p.fmt.PlusV
case '#':
return p.fmt.Sharp || p.fmt.SharpV
case ' ':
return p.fmt.Space
case '0':
return p.fmt.Zero
}
return false
}
// getField gets the i'th field of the struct value.
// If the field is itself is an interface, return a value for
// the thing inside the interface, not the interface itself.
func getField(v reflect.Value, i int) reflect.Value {
val := v.Field(i)
if val.Kind() == reflect.Interface && !val.IsNil() {
val = val.Elem()
}
return val
}
func (p *printer) unknownType(v reflect.Value) {
if !v.IsValid() {
p.WriteString(nilAngleString)
return
}
p.WriteByte('?')
p.WriteString(v.Type().String())
p.WriteByte('?')
}
func (p *printer) badVerb(verb rune) {
p.erroring = true
p.WriteString(percentBangString)
p.WriteRune(verb)
p.WriteByte('(')
switch {
case p.arg != nil:
p.WriteString(reflect.TypeOf(p.arg).String())
p.WriteByte('=')
p.printArg(p.arg, 'v')
case p.value.IsValid():
p.WriteString(p.value.Type().String())
p.WriteByte('=')
p.printValue(p.value, 'v', 0)
default:
p.WriteString(nilAngleString)
}
p.WriteByte(')')
p.erroring = false
}
func (p *printer) fmtBool(v bool, verb rune) {
switch verb {
case 't', 'v':
p.fmt.fmt_boolean(v)
default:
p.badVerb(verb)
}
}
// fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
// not, as requested, by temporarily setting the sharp flag.
func (p *printer) fmt0x64(v uint64, leading0x bool) {
sharp := p.fmt.Sharp
p.fmt.Sharp = leading0x
p.fmt.fmt_integer(v, 16, unsigned, ldigits)
p.fmt.Sharp = sharp
}
// fmtInteger formats a signed or unsigned integer.
func (p *printer) fmtInteger(v uint64, isSigned bool, verb rune) {
switch verb {
case 'v':
if p.fmt.SharpV && !isSigned {
p.fmt0x64(v, true)
return
}
fallthrough
case 'd':
if p.fmt.Sharp || p.fmt.SharpV {
p.fmt.fmt_integer(v, 10, isSigned, ldigits)
} else {
p.fmtDecimalInt(v, isSigned)
}
case 'b':
p.fmt.fmt_integer(v, 2, isSigned, ldigits)
case 'o':
p.fmt.fmt_integer(v, 8, isSigned, ldigits)
case 'x':
p.fmt.fmt_integer(v, 16, isSigned, ldigits)
case 'X':
p.fmt.fmt_integer(v, 16, isSigned, udigits)
case 'c':
p.fmt.fmt_c(v)
case 'q':
if v <= utf8.MaxRune {
p.fmt.fmt_qc(v)
} else {
p.badVerb(verb)
}
case 'U':
p.fmt.fmt_unicode(v)
default:
p.badVerb(verb)
}
}
// fmtFloat formats a float. The default precision for each verb
// is specified as last argument in the call to fmt_float.
func (p *printer) fmtFloat(v float64, size int, verb rune) {
switch verb {
case 'b':
p.fmt.fmt_float(v, size, verb, -1)
case 'v':
verb = 'g'
fallthrough
case 'g', 'G':
if p.fmt.Sharp || p.fmt.SharpV {
p.fmt.fmt_float(v, size, verb, -1)
} else {
p.fmtVariableFloat(v, size)
}
case 'e', 'E':
if p.fmt.Sharp || p.fmt.SharpV {
p.fmt.fmt_float(v, size, verb, 6)
} else {
p.fmtScientific(v, size, 6)
}
case 'f', 'F':
if p.fmt.Sharp || p.fmt.SharpV {
p.fmt.fmt_float(v, size, verb, 6)
} else {
p.fmtDecimalFloat(v, size, 6)
}
default:
p.badVerb(verb)
}
}
func (p *printer) setFlags(f *number.Formatter) {
f.Flags &^= number.ElideSign
if p.fmt.Plus || p.fmt.Space {
f.Flags |= number.AlwaysSign
if !p.fmt.Plus {
f.Flags |= number.ElideSign
}
} else {
f.Flags &^= number.AlwaysSign
}
}
func (p *printer) updatePadding(f *number.Formatter) {
f.Flags &^= number.PadMask
if p.fmt.Minus {
f.Flags |= number.PadAfterSuffix
} else {
f.Flags |= number.PadBeforePrefix
}
f.PadRune = ' '
f.FormatWidth = uint16(p.fmt.Width)
}
func (p *printer) initDecimal(minFrac, maxFrac int) {
f := &p.toDecimal
f.MinIntegerDigits = 1
f.MaxIntegerDigits = 0
f.MinFractionDigits = uint8(minFrac)
f.MaxFractionDigits = int16(maxFrac)
p.setFlags(f)
f.PadRune = 0
if p.fmt.WidthPresent {
if p.fmt.Zero {
wid := p.fmt.Width
// Use significant integers for this.
// TODO: this is not the same as width, but so be it.
if f.MinFractionDigits > 0 {
wid -= 1 + int(f.MinFractionDigits)
}
if p.fmt.Plus || p.fmt.Space {
wid--
}
if wid > 0 && wid > int(f.MinIntegerDigits) {
f.MinIntegerDigits = uint8(wid)
}
}
p.updatePadding(f)
}
}
func (p *printer) initScientific(minFrac, maxFrac int) {
f := &p.toScientific
if maxFrac < 0 {
f.SetPrecision(maxFrac)
} else {
f.SetPrecision(maxFrac + 1)
f.MinFractionDigits = uint8(minFrac)
f.MaxFractionDigits = int16(maxFrac)
}
f.MinExponentDigits = 2
p.setFlags(f)
f.PadRune = 0
if p.fmt.WidthPresent {
f.Flags &^= number.PadMask
if p.fmt.Zero {
f.PadRune = f.Digit(0)
f.Flags |= number.PadAfterPrefix
} else {
f.PadRune = ' '
f.Flags |= number.PadBeforePrefix
}
p.updatePadding(f)
}
}
func (p *printer) fmtDecimalInt(v uint64, isSigned bool) {
var d number.Decimal
f := &p.toDecimal
if p.fmt.PrecPresent {
p.setFlags(f)
f.MinIntegerDigits = uint8(p.fmt.Prec)
f.MaxIntegerDigits = 0
f.MinFractionDigits = 0
f.MaxFractionDigits = 0
if p.fmt.WidthPresent {
p.updatePadding(f)
}
} else {
p.initDecimal(0, 0)
}
d.ConvertInt(p.toDecimal.RoundingContext, isSigned, v)
out := p.toDecimal.Format([]byte(nil), &d)
p.Buffer.Write(out)
}
func (p *printer) fmtDecimalFloat(v float64, size, prec int) {
var d number.Decimal
if p.fmt.PrecPresent {
prec = p.fmt.Prec
}
p.initDecimal(prec, prec)
d.ConvertFloat(p.toDecimal.RoundingContext, v, size)
out := p.toDecimal.Format([]byte(nil), &d)
p.Buffer.Write(out)
}
func (p *printer) fmtVariableFloat(v float64, size int) {
prec := -1
if p.fmt.PrecPresent {
prec = p.fmt.Prec
}
var d number.Decimal
p.initScientific(0, prec)
d.ConvertFloat(p.toScientific.RoundingContext, v, size)
// Copy logic of 'g' formatting from strconv. It is simplified a bit as
// we don't have to mind having prec > len(d.Digits).
shortest := prec < 0
ePrec := prec
if shortest {
prec = len(d.Digits)
ePrec = 6
} else if prec == 0 {
prec = 1
ePrec = 1
}
exp := int(d.Exp) - 1
if exp < -4 || exp >= ePrec {
p.initScientific(0, prec)
out := p.toScientific.Format([]byte(nil), &d)
p.Buffer.Write(out)
} else {
if prec > int(d.Exp) {
prec = len(d.Digits)
}
if prec -= int(d.Exp); prec < 0 {
prec = 0
}
p.initDecimal(0, prec)
out := p.toDecimal.Format([]byte(nil), &d)
p.Buffer.Write(out)
}
}
func (p *printer) fmtScientific(v float64, size, prec int) {
var d number.Decimal
if p.fmt.PrecPresent {
prec = p.fmt.Prec
}
p.initScientific(prec, prec)
rc := p.toScientific.RoundingContext
d.ConvertFloat(rc, v, size)
out := p.toScientific.Format([]byte(nil), &d)
p.Buffer.Write(out)
}
// fmtComplex formats a complex number v with
// r = real(v) and j = imag(v) as (r+ji) using
// fmtFloat for r and j formatting.
func (p *printer) fmtComplex(v complex128, size int, verb rune) {
// Make sure any unsupported verbs are found before the
// calls to fmtFloat to not generate an incorrect error string.
switch verb {
case 'v', 'b', 'g', 'G', 'f', 'F', 'e', 'E':
p.WriteByte('(')
p.fmtFloat(real(v), size/2, verb)
// Imaginary part always has a sign.
if math.IsNaN(imag(v)) {
// By CLDR's rules, NaNs do not use patterns or signs. As this code
// relies on AlwaysSign working for imaginary parts, we need to
// manually handle NaNs.
f := &p.toScientific
p.setFlags(f)
p.updatePadding(f)
p.setFlags(f)
nan := f.Symbol(number.SymNan)
extra := 0
if w, ok := p.Width(); ok {
extra = w - utf8.RuneCountInString(nan) - 1
}
if f.Flags&number.PadAfterNumber == 0 {
for ; extra > 0; extra-- {
p.WriteRune(f.PadRune)
}
}
p.WriteString(f.Symbol(number.SymPlusSign))
p.WriteString(nan)
for ; extra > 0; extra-- {
p.WriteRune(f.PadRune)
}
p.WriteString("i)")
return
}
oldPlus := p.fmt.Plus
p.fmt.Plus = true
p.fmtFloat(imag(v), size/2, verb)
p.WriteString("i)") // TODO: use symbol?
p.fmt.Plus = oldPlus
default:
p.badVerb(verb)
}
}
func (p *printer) fmtString(v string, verb rune) {
switch verb {
case 'v':
if p.fmt.SharpV {
p.fmt.fmt_q(v)
} else {
p.fmt.fmt_s(v)
}
case 's':
p.fmt.fmt_s(v)
case 'x':
p.fmt.fmt_sx(v, ldigits)
case 'X':
p.fmt.fmt_sx(v, udigits)
case 'q':
p.fmt.fmt_q(v)
case 'm':
ctx := p.cat.Context(p.tag, rawPrinter{p})
if ctx.Execute(v) == catalog.ErrNotFound {
p.WriteString(v)
}
default:
p.badVerb(verb)
}
}
func (p *printer) fmtBytes(v []byte, verb rune, typeString string) {
switch verb {
case 'v', 'd':
if p.fmt.SharpV {
p.WriteString(typeString)
if v == nil {
p.WriteString(nilParenString)
return
}
p.WriteByte('{')
for i, c := range v {
if i > 0 {
p.WriteString(commaSpaceString)
}
p.fmt0x64(uint64(c), true)
}
p.WriteByte('}')
} else {
p.WriteByte('[')
for i, c := range v {
if i > 0 {
p.WriteByte(' ')
}
p.fmt.fmt_integer(uint64(c), 10, unsigned, ldigits)
}
p.WriteByte(']')
}
case 's':
p.fmt.fmt_s(string(v))
case 'x':
p.fmt.fmt_bx(v, ldigits)
case 'X':
p.fmt.fmt_bx(v, udigits)
case 'q':
p.fmt.fmt_q(string(v))
default:
p.printValue(reflect.ValueOf(v), verb, 0)
}
}
func (p *printer) fmtPointer(value reflect.Value, verb rune) {
var u uintptr
switch value.Kind() {
case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer:
u = value.Pointer()
default:
p.badVerb(verb)
return
}
switch verb {
case 'v':
if p.fmt.SharpV {
p.WriteByte('(')
p.WriteString(value.Type().String())
p.WriteString(")(")
if u == 0 {
p.WriteString(nilString)
} else {
p.fmt0x64(uint64(u), true)
}
p.WriteByte(')')
} else {
if u == 0 {
p.fmt.padString(nilAngleString)
} else {
p.fmt0x64(uint64(u), !p.fmt.Sharp)
}
}
case 'p':
p.fmt0x64(uint64(u), !p.fmt.Sharp)
case 'b', 'o', 'd', 'x', 'X':
if verb == 'd' {
p.fmt.Sharp = true // Print as standard go. TODO: does this make sense?
}
p.fmtInteger(uint64(u), unsigned, verb)
default:
p.badVerb(verb)
}
}
func (p *printer) catchPanic(arg interface{}, verb rune) {
if err := recover(); err != nil {
// If it's a nil pointer, just say "<nil>". The likeliest causes are a
// Stringer that fails to guard against nil or a nil pointer for a
// value receiver, and in either case, "<nil>" is a nice result.
if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() {
p.WriteString(nilAngleString)
return
}
// Otherwise print a concise panic message. Most of the time the panic
// value will print itself nicely.
if p.panicking {
// Nested panics; the recursion in printArg cannot succeed.
panic(err)
}
oldFlags := p.fmt.Parser
// For this output we want default behavior.
p.fmt.ClearFlags()
p.WriteString(percentBangString)
p.WriteRune(verb)
p.WriteString(panicString)
p.panicking = true
p.printArg(err, 'v')
p.panicking = false
p.WriteByte(')')
p.fmt.Parser = oldFlags
}
}
func (p *printer) handleMethods(verb rune) (handled bool) {
if p.erroring {
return
}
// Is it a Formatter?
if formatter, ok := p.arg.(format.Formatter); ok {
handled = true
defer p.catchPanic(p.arg, verb)
formatter.Format(p, verb)
return
}
if formatter, ok := p.arg.(fmt.Formatter); ok {
handled = true
defer p.catchPanic(p.arg, verb)
formatter.Format(p, verb)
return
}
// If we're doing Go syntax and the argument knows how to supply it, take care of it now.
if p.fmt.SharpV {
if stringer, ok := p.arg.(fmt.GoStringer); ok {
handled = true
defer p.catchPanic(p.arg, verb)
// Print the result of GoString unadorned.
p.fmt.fmt_s(stringer.GoString())
return
}
} else {
// If a string is acceptable according to the format, see if
// the value satisfies one of the string-valued interfaces.
// Println etc. set verb to %v, which is "stringable".
switch verb {
case 'v', 's', 'x', 'X', 'q':
// Is it an error or Stringer?
// The duplication in the bodies is necessary:
// setting handled and deferring catchPanic
// must happen before calling the method.
switch v := p.arg.(type) {
case error:
handled = true
defer p.catchPanic(p.arg, verb)
p.fmtString(v.Error(), verb)
return
case fmt.Stringer:
handled = true
defer p.catchPanic(p.arg, verb)
p.fmtString(v.String(), verb)
return
}
}
}
return false
}
func (p *printer) printArg(arg interface{}, verb rune) {
p.arg = arg
p.value = reflect.Value{}
if arg == nil {
switch verb {
case 'T', 'v':
p.fmt.padString(nilAngleString)
default:
p.badVerb(verb)
}
return
}
// Special processing considerations.
// %T (the value's type) and %p (its address) are special; we always do them first.
switch verb {
case 'T':
p.fmt.fmt_s(reflect.TypeOf(arg).String())
return
case 'p':
p.fmtPointer(reflect.ValueOf(arg), 'p')
return
}
// Some types can be done without reflection.
switch f := arg.(type) {
case bool:
p.fmtBool(f, verb)
case float32:
p.fmtFloat(float64(f), 32, verb)
case float64:
p.fmtFloat(f, 64, verb)
case complex64:
p.fmtComplex(complex128(f), 64, verb)
case complex128:
p.fmtComplex(f, 128, verb)
case int:
p.fmtInteger(uint64(f), signed, verb)
case int8:
p.fmtInteger(uint64(f), signed, verb)
case int16:
p.fmtInteger(uint64(f), signed, verb)
case int32:
p.fmtInteger(uint64(f), signed, verb)
case int64:
p.fmtInteger(uint64(f), signed, verb)
case uint:
p.fmtInteger(uint64(f), unsigned, verb)
case uint8:
p.fmtInteger(uint64(f), unsigned, verb)
case uint16:
p.fmtInteger(uint64(f), unsigned, verb)
case uint32:
p.fmtInteger(uint64(f), unsigned, verb)
case uint64:
p.fmtInteger(f, unsigned, verb)
case uintptr:
p.fmtInteger(uint64(f), unsigned, verb)
case string:
p.fmtString(f, verb)
case []byte:
p.fmtBytes(f, verb, "[]byte")
case reflect.Value:
// Handle extractable values with special methods
// since printValue does not handle them at depth 0.
if f.IsValid() && f.CanInterface() {
p.arg = f.Interface()
if p.handleMethods(verb) {
return
}
}
p.printValue(f, verb, 0)
default:
// If the type is not simple, it might have methods.
if !p.handleMethods(verb) {
// Need to use reflection, since the type had no
// interface methods that could be used for formatting.
p.printValue(reflect.ValueOf(f), verb, 0)
}
}
}
// printValue is similar to printArg but starts with a reflect value, not an interface{} value.
// It does not handle 'p' and 'T' verbs because these should have been already handled by printArg.
func (p *printer) printValue(value reflect.Value, verb rune, depth int) {
// Handle values with special methods if not already handled by printArg (depth == 0).
if depth > 0 && value.IsValid() && value.CanInterface() {
p.arg = value.Interface()
if p.handleMethods(verb) {
return
}
}
p.arg = nil
p.value = value
switch f := value; value.Kind() {
case reflect.Invalid:
if depth == 0 {
p.WriteString(invReflectString)
} else {
switch verb {
case 'v':
p.WriteString(nilAngleString)
default:
p.badVerb(verb)
}
}
case reflect.Bool:
p.fmtBool(f.Bool(), verb)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
p.fmtInteger(uint64(f.Int()), signed, verb)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
p.fmtInteger(f.Uint(), unsigned, verb)
case reflect.Float32:
p.fmtFloat(f.Float(), 32, verb)
case reflect.Float64:
p.fmtFloat(f.Float(), 64, verb)
case reflect.Complex64:
p.fmtComplex(f.Complex(), 64, verb)
case reflect.Complex128:
p.fmtComplex(f.Complex(), 128, verb)
case reflect.String:
p.fmtString(f.String(), verb)
case reflect.Map:
if p.fmt.SharpV {
p.WriteString(f.Type().String())
if f.IsNil() {
p.WriteString(nilParenString)
return
}
p.WriteByte('{')
} else {
p.WriteString(mapString)
}
keys := f.MapKeys()
for i, key := range keys {
if i > 0 {
if p.fmt.SharpV {
p.WriteString(commaSpaceString)
} else {
p.WriteByte(' ')
}
}
p.printValue(key, verb, depth+1)
p.WriteByte(':')
p.printValue(f.MapIndex(key), verb, depth+1)
}
if p.fmt.SharpV {
p.WriteByte('}')
} else {
p.WriteByte(']')
}
case reflect.Struct:
if p.fmt.SharpV {
p.WriteString(f.Type().String())
}
p.WriteByte('{')
for i := 0; i < f.NumField(); i++ {
if i > 0 {
if p.fmt.SharpV {
p.WriteString(commaSpaceString)
} else {
p.WriteByte(' ')
}
}
if p.fmt.PlusV || p.fmt.SharpV {
if name := f.Type().Field(i).Name; name != "" {
p.WriteString(name)
p.WriteByte(':')
}
}
p.printValue(getField(f, i), verb, depth+1)
}
p.WriteByte('}')
case reflect.Interface:
value := f.Elem()
if !value.IsValid() {
if p.fmt.SharpV {
p.WriteString(f.Type().String())
p.WriteString(nilParenString)
} else {
p.WriteString(nilAngleString)
}
} else {
p.printValue(value, verb, depth+1)
}
case reflect.Array, reflect.Slice:
switch verb {
case 's', 'q', 'x', 'X':
// Handle byte and uint8 slices and arrays special for the above verbs.
t := f.Type()
if t.Elem().Kind() == reflect.Uint8 {
var bytes []byte
if f.Kind() == reflect.Slice {
bytes = f.Bytes()
} else if f.CanAddr() {
bytes = f.Slice(0, f.Len()).Bytes()
} else {
// We have an array, but we cannot Slice() a non-addressable array,
// so we build a slice by hand. This is a rare case but it would be nice
// if reflection could help a little more.
bytes = make([]byte, f.Len())
for i := range bytes {
bytes[i] = byte(f.Index(i).Uint())
}
}
p.fmtBytes(bytes, verb, t.String())
return
}
}
if p.fmt.SharpV {
p.WriteString(f.Type().String())
if f.Kind() == reflect.Slice && f.IsNil() {
p.WriteString(nilParenString)
return
}
p.WriteByte('{')
for i := 0; i < f.Len(); i++ {
if i > 0 {
p.WriteString(commaSpaceString)
}
p.printValue(f.Index(i), verb, depth+1)
}
p.WriteByte('}')
} else {
p.WriteByte('[')
for i := 0; i < f.Len(); i++ {
if i > 0 {
p.WriteByte(' ')
}
p.printValue(f.Index(i), verb, depth+1)
}
p.WriteByte(']')
}
case reflect.Ptr:
// pointer to array or slice or struct? ok at top level
// but not embedded (avoid loops)
if depth == 0 && f.Pointer() != 0 {
switch a := f.Elem(); a.Kind() {
case reflect.Array, reflect.Slice, reflect.Struct, reflect.Map:
p.WriteByte('&')
p.printValue(a, verb, depth+1)
return
}
}
fallthrough
case reflect.Chan, reflect.Func, reflect.UnsafePointer:
p.fmtPointer(f, verb)
default:
p.unknownType(f)
}
}
func (p *printer) badArgNum(verb rune) {
p.WriteString(percentBangString)
p.WriteRune(verb)
p.WriteString(badIndexString)
}
func (p *printer) missingArg(verb rune) {
p.WriteString(percentBangString)
p.WriteRune(verb)
p.WriteString(missingString)
}
func (p *printer) doPrintf(fmt string) {
for p.fmt.Parser.SetFormat(fmt); p.fmt.Scan(); {
switch p.fmt.Status {
case format.StatusText:
p.WriteString(p.fmt.Text())
case format.StatusSubstitution:
p.printArg(p.Arg(p.fmt.ArgNum), p.fmt.Verb)
case format.StatusBadWidthSubstitution:
p.WriteString(badWidthString)
p.printArg(p.Arg(p.fmt.ArgNum), p.fmt.Verb)
case format.StatusBadPrecSubstitution:
p.WriteString(badPrecString)
p.printArg(p.Arg(p.fmt.ArgNum), p.fmt.Verb)
case format.StatusNoVerb:
p.WriteString(noVerbString)
case format.StatusBadArgNum:
p.badArgNum(p.fmt.Verb)
case format.StatusMissingArg:
p.missingArg(p.fmt.Verb)
default:
panic("unreachable")
}
}
// Check for extra arguments, but only if there was at least one ordered
// argument. Note that this behavior is necessarily different from fmt:
// different variants of messages may opt to drop some or all of the
// arguments.
if !p.fmt.Reordered && p.fmt.ArgNum < len(p.fmt.Args) && p.fmt.ArgNum != 0 {
p.fmt.ClearFlags()
p.WriteString(extraString)
for i, arg := range p.fmt.Args[p.fmt.ArgNum:] {
if i > 0 {
p.WriteString(commaSpaceString)
}
if arg == nil {
p.WriteString(nilAngleString)
} else {
p.WriteString(reflect.TypeOf(arg).String())
p.WriteString("=")
p.printArg(arg, 'v')
}
}
p.WriteByte(')')
}
}
func (p *printer) doPrint(a []interface{}) {
prevString := false
for argNum, arg := range a {
isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String
// Add a space between two non-string arguments.
if argNum > 0 && !isString && !prevString {
p.WriteByte(' ')
}
p.printArg(arg, 'v')
prevString = isString
}
}
// doPrintln is like doPrint but always adds a space between arguments
// and a newline after the last argument.
func (p *printer) doPrintln(a []interface{}) {
for argNum, arg := range a {
if argNum > 0 {
p.WriteByte(' ')
}
p.printArg(arg, 'v')
}
p.WriteByte('\n')
}

24
vendor/modules.txt vendored
View File

@ -1,17 +1,37 @@
# github.com/caarlos0/env/v9 v9.0.0
## explicit; go 1.17
github.com/caarlos0/env/v9
# github.com/google/go-cmp v0.5.9
# github.com/google/go-cmp v0.6.0
## explicit; go 1.13
github.com/google/go-cmp/cmp
github.com/google/go-cmp/cmp/internal/diff
github.com/google/go-cmp/cmp/internal/flags
github.com/google/go-cmp/cmp/internal/function
github.com/google/go-cmp/cmp/internal/value
# golang.org/x/net v0.15.0
# github.com/valyala/bytebufferpool v1.0.0
## explicit
github.com/valyala/bytebufferpool
# github.com/valyala/quicktemplate v1.7.0
## explicit; go 1.11
github.com/valyala/quicktemplate
# golang.org/x/net v0.17.0
## explicit; go 1.17
golang.org/x/net/html
golang.org/x/net/html/atom
# golang.org/x/text v0.13.0
## explicit; go 1.17
golang.org/x/text/feature/plural
golang.org/x/text/internal
golang.org/x/text/internal/catmsg
golang.org/x/text/internal/format
golang.org/x/text/internal/language
golang.org/x/text/internal/language/compact
golang.org/x/text/internal/number
golang.org/x/text/internal/stringset
golang.org/x/text/internal/tag
golang.org/x/text/language
golang.org/x/text/message
golang.org/x/text/message/catalog
# golang.org/x/xerrors v0.0.0-20220907171357-04be3eba64a2
## explicit; go 1.17
golang.org/x/xerrors

77
web/template/baseof.qtpl Normal file
View File

@ -0,0 +1,77 @@
{% import (
"golang.org/x/text/language"
"golang.org/x/text/message"
) %}
{% interface Page {
body()
dir()
head()
lang()
title()
t(format message.Reference, a ...any)
} %}
{% code
type BaseOf struct {
language language.Tag
printer *message.Printer
}
func NewBaseOf(lang language.Tag) *BaseOf {
return &BaseOf{
language: lang,
printer: message.NewPrinter(lang),
}
}
%}
{% func (b *BaseOf) lang() %}
{%s b.language.String() %}
{% endfunc %}
{% func (b *BaseOf) dir() %}
{% for _, tag := range []language.Tag{
language.Arabic,
language.Hebrew,
language.Persian,
language.Urdu,
} %}
{% if b.language != tag %}
{% continue %}
{% endif %}
rtl
{% return %}
{% endfor %}
ltr
{% endfunc %}
{% func (b *BaseOf) title() %}
Micropub
{% endfunc %}
{% func (b *BaseOf) head() %}{% endfunc %}
{% func (b *BaseOf) body() %}{% endfunc %}
{% func (b *BaseOf) t(format message.Reference, a ...any) %}
{%s b.printer.Sprintf(format, a...) %}
{% endfunc %}
{% func Template(p Page) %}
<!DOCTYPE html>
<html lang="{%= p.lang() %}"
dir="{%= p.dir() %}">
<head>
<meta charset="UTF-8">
<meta name="viewport"
content="width=device-width, initial-scale=1.0">
{%= p.head() %}
<title>{%= p.title() %}</title>
</head>
<body>
{%= p.body() %}
</body>
</html>
{% endfunc %}

388
web/template/baseof.qtpl.go Normal file
View File

@ -0,0 +1,388 @@
// Code generated by qtc from "baseof.qtpl". DO NOT EDIT.
// See https://github.com/valyala/quicktemplate for details.
//line web/template/baseof.qtpl:1
package template
//line web/template/baseof.qtpl:1
import (
"golang.org/x/text/language"
"golang.org/x/text/message"
)
//line web/template/baseof.qtpl:6
import (
qtio422016 "io"
qt422016 "github.com/valyala/quicktemplate"
)
//line web/template/baseof.qtpl:6
var (
_ = qtio422016.Copy
_ = qt422016.AcquireByteBuffer
)
//line web/template/baseof.qtpl:6
type Page interface {
//line web/template/baseof.qtpl:6
body() string
//line web/template/baseof.qtpl:6
streambody(qw422016 *qt422016.Writer)
//line web/template/baseof.qtpl:6
writebody(qq422016 qtio422016.Writer)
//line web/template/baseof.qtpl:6
dir() string
//line web/template/baseof.qtpl:6
streamdir(qw422016 *qt422016.Writer)
//line web/template/baseof.qtpl:6
writedir(qq422016 qtio422016.Writer)
//line web/template/baseof.qtpl:6
head() string
//line web/template/baseof.qtpl:6
streamhead(qw422016 *qt422016.Writer)
//line web/template/baseof.qtpl:6
writehead(qq422016 qtio422016.Writer)
//line web/template/baseof.qtpl:6
lang() string
//line web/template/baseof.qtpl:6
streamlang(qw422016 *qt422016.Writer)
//line web/template/baseof.qtpl:6
writelang(qq422016 qtio422016.Writer)
//line web/template/baseof.qtpl:6
title() string
//line web/template/baseof.qtpl:6
streamtitle(qw422016 *qt422016.Writer)
//line web/template/baseof.qtpl:6
writetitle(qq422016 qtio422016.Writer)
//line web/template/baseof.qtpl:6
t(format message.Reference, a ...any) string
//line web/template/baseof.qtpl:6
streamt(qw422016 *qt422016.Writer, format message.Reference, a ...any)
//line web/template/baseof.qtpl:6
writet(qq422016 qtio422016.Writer, format message.Reference, a ...any)
//line web/template/baseof.qtpl:6
}
//line web/template/baseof.qtpl:16
type BaseOf struct {
language language.Tag
printer *message.Printer
}
func NewBaseOf(lang language.Tag) *BaseOf {
return &BaseOf{
language: lang,
printer: message.NewPrinter(lang),
}
}
//line web/template/baseof.qtpl:29
func (b *BaseOf) streamlang(qw422016 *qt422016.Writer) {
//line web/template/baseof.qtpl:29
qw422016.N().S(`
`)
//line web/template/baseof.qtpl:30
qw422016.E().S(b.language.String())
//line web/template/baseof.qtpl:30
qw422016.N().S(`
`)
//line web/template/baseof.qtpl:31
}
//line web/template/baseof.qtpl:31
func (b *BaseOf) writelang(qq422016 qtio422016.Writer) {
//line web/template/baseof.qtpl:31
qw422016 := qt422016.AcquireWriter(qq422016)
//line web/template/baseof.qtpl:31
b.streamlang(qw422016)
//line web/template/baseof.qtpl:31
qt422016.ReleaseWriter(qw422016)
//line web/template/baseof.qtpl:31
}
//line web/template/baseof.qtpl:31
func (b *BaseOf) lang() string {
//line web/template/baseof.qtpl:31
qb422016 := qt422016.AcquireByteBuffer()
//line web/template/baseof.qtpl:31
b.writelang(qb422016)
//line web/template/baseof.qtpl:31
qs422016 := string(qb422016.B)
//line web/template/baseof.qtpl:31
qt422016.ReleaseByteBuffer(qb422016)
//line web/template/baseof.qtpl:31
return qs422016
//line web/template/baseof.qtpl:31
}
//line web/template/baseof.qtpl:33
func (b *BaseOf) streamdir(qw422016 *qt422016.Writer) {
//line web/template/baseof.qtpl:33
qw422016.N().S(`
`)
//line web/template/baseof.qtpl:34
for _, tag := range []language.Tag{
language.Arabic,
language.Hebrew,
language.Persian,
language.Urdu,
} {
//line web/template/baseof.qtpl:39
qw422016.N().S(`
`)
//line web/template/baseof.qtpl:40
if b.language != tag {
//line web/template/baseof.qtpl:40
qw422016.N().S(`
`)
//line web/template/baseof.qtpl:41
continue
//line web/template/baseof.qtpl:42
}
//line web/template/baseof.qtpl:42
qw422016.N().S(`
rtl
`)
//line web/template/baseof.qtpl:44
return
//line web/template/baseof.qtpl:45
}
//line web/template/baseof.qtpl:45
qw422016.N().S(`
ltr
`)
//line web/template/baseof.qtpl:47
}
//line web/template/baseof.qtpl:47
func (b *BaseOf) writedir(qq422016 qtio422016.Writer) {
//line web/template/baseof.qtpl:47
qw422016 := qt422016.AcquireWriter(qq422016)
//line web/template/baseof.qtpl:47
b.streamdir(qw422016)
//line web/template/baseof.qtpl:47
qt422016.ReleaseWriter(qw422016)
//line web/template/baseof.qtpl:47
}
//line web/template/baseof.qtpl:47
func (b *BaseOf) dir() string {
//line web/template/baseof.qtpl:47
qb422016 := qt422016.AcquireByteBuffer()
//line web/template/baseof.qtpl:47
b.writedir(qb422016)
//line web/template/baseof.qtpl:47
qs422016 := string(qb422016.B)
//line web/template/baseof.qtpl:47
qt422016.ReleaseByteBuffer(qb422016)
//line web/template/baseof.qtpl:47
return qs422016
//line web/template/baseof.qtpl:47
}
//line web/template/baseof.qtpl:49
func (b *BaseOf) streamtitle(qw422016 *qt422016.Writer) {
//line web/template/baseof.qtpl:49
qw422016.N().S(`
Micropub
`)
//line web/template/baseof.qtpl:51
}
//line web/template/baseof.qtpl:51
func (b *BaseOf) writetitle(qq422016 qtio422016.Writer) {
//line web/template/baseof.qtpl:51
qw422016 := qt422016.AcquireWriter(qq422016)
//line web/template/baseof.qtpl:51
b.streamtitle(qw422016)
//line web/template/baseof.qtpl:51
qt422016.ReleaseWriter(qw422016)
//line web/template/baseof.qtpl:51
}
//line web/template/baseof.qtpl:51
func (b *BaseOf) title() string {
//line web/template/baseof.qtpl:51
qb422016 := qt422016.AcquireByteBuffer()
//line web/template/baseof.qtpl:51
b.writetitle(qb422016)
//line web/template/baseof.qtpl:51
qs422016 := string(qb422016.B)
//line web/template/baseof.qtpl:51
qt422016.ReleaseByteBuffer(qb422016)
//line web/template/baseof.qtpl:51
return qs422016
//line web/template/baseof.qtpl:51
}
//line web/template/baseof.qtpl:53
func (b *BaseOf) streamhead(qw422016 *qt422016.Writer) {
//line web/template/baseof.qtpl:53
}
//line web/template/baseof.qtpl:53
func (b *BaseOf) writehead(qq422016 qtio422016.Writer) {
//line web/template/baseof.qtpl:53
qw422016 := qt422016.AcquireWriter(qq422016)
//line web/template/baseof.qtpl:53
b.streamhead(qw422016)
//line web/template/baseof.qtpl:53
qt422016.ReleaseWriter(qw422016)
//line web/template/baseof.qtpl:53
}
//line web/template/baseof.qtpl:53
func (b *BaseOf) head() string {
//line web/template/baseof.qtpl:53
qb422016 := qt422016.AcquireByteBuffer()
//line web/template/baseof.qtpl:53
b.writehead(qb422016)
//line web/template/baseof.qtpl:53
qs422016 := string(qb422016.B)
//line web/template/baseof.qtpl:53
qt422016.ReleaseByteBuffer(qb422016)
//line web/template/baseof.qtpl:53
return qs422016
//line web/template/baseof.qtpl:53
}
//line web/template/baseof.qtpl:54
func (b *BaseOf) streambody(qw422016 *qt422016.Writer) {
//line web/template/baseof.qtpl:54
}
//line web/template/baseof.qtpl:54
func (b *BaseOf) writebody(qq422016 qtio422016.Writer) {
//line web/template/baseof.qtpl:54
qw422016 := qt422016.AcquireWriter(qq422016)
//line web/template/baseof.qtpl:54
b.streambody(qw422016)
//line web/template/baseof.qtpl:54
qt422016.ReleaseWriter(qw422016)
//line web/template/baseof.qtpl:54
}
//line web/template/baseof.qtpl:54
func (b *BaseOf) body() string {
//line web/template/baseof.qtpl:54
qb422016 := qt422016.AcquireByteBuffer()
//line web/template/baseof.qtpl:54
b.writebody(qb422016)
//line web/template/baseof.qtpl:54
qs422016 := string(qb422016.B)
//line web/template/baseof.qtpl:54
qt422016.ReleaseByteBuffer(qb422016)
//line web/template/baseof.qtpl:54
return qs422016
//line web/template/baseof.qtpl:54
}
//line web/template/baseof.qtpl:56
func (b *BaseOf) streamt(qw422016 *qt422016.Writer, format message.Reference, a ...any) {
//line web/template/baseof.qtpl:56
qw422016.N().S(`
`)
//line web/template/baseof.qtpl:57
qw422016.E().S(b.printer.Sprintf(format, a...))
//line web/template/baseof.qtpl:57
qw422016.N().S(`
`)
//line web/template/baseof.qtpl:58
}
//line web/template/baseof.qtpl:58
func (b *BaseOf) writet(qq422016 qtio422016.Writer, format message.Reference, a ...any) {
//line web/template/baseof.qtpl:58
qw422016 := qt422016.AcquireWriter(qq422016)
//line web/template/baseof.qtpl:58
b.streamt(qw422016, format, a...)
//line web/template/baseof.qtpl:58
qt422016.ReleaseWriter(qw422016)
//line web/template/baseof.qtpl:58
}
//line web/template/baseof.qtpl:58
func (b *BaseOf) t(format message.Reference, a ...any) string {
//line web/template/baseof.qtpl:58
qb422016 := qt422016.AcquireByteBuffer()
//line web/template/baseof.qtpl:58
b.writet(qb422016, format, a...)
//line web/template/baseof.qtpl:58
qs422016 := string(qb422016.B)
//line web/template/baseof.qtpl:58
qt422016.ReleaseByteBuffer(qb422016)
//line web/template/baseof.qtpl:58
return qs422016
//line web/template/baseof.qtpl:58
}
//line web/template/baseof.qtpl:60
func StreamTemplate(qw422016 *qt422016.Writer, p Page) {
//line web/template/baseof.qtpl:60
qw422016.N().S(`
<!DOCTYPE html>
<html lang="`)
//line web/template/baseof.qtpl:62
p.streamlang(qw422016)
//line web/template/baseof.qtpl:62
qw422016.N().S(`"
dir="`)
//line web/template/baseof.qtpl:63
p.streamdir(qw422016)
//line web/template/baseof.qtpl:63
qw422016.N().S(`">
<head>
<meta charset="UTF-8">
<meta name="viewport"
content="width=device-width, initial-scale=1.0">
`)
//line web/template/baseof.qtpl:69
p.streamhead(qw422016)
//line web/template/baseof.qtpl:69
qw422016.N().S(`
<title>`)
//line web/template/baseof.qtpl:70
p.streamtitle(qw422016)
//line web/template/baseof.qtpl:70
qw422016.N().S(`</title>
</head>
<body>
`)
//line web/template/baseof.qtpl:74
p.streambody(qw422016)
//line web/template/baseof.qtpl:74
qw422016.N().S(`
</body>
</html>
`)
//line web/template/baseof.qtpl:77
}
//line web/template/baseof.qtpl:77
func WriteTemplate(qq422016 qtio422016.Writer, p Page) {
//line web/template/baseof.qtpl:77
qw422016 := qt422016.AcquireWriter(qq422016)
//line web/template/baseof.qtpl:77
StreamTemplate(qw422016, p)
//line web/template/baseof.qtpl:77
qt422016.ReleaseWriter(qw422016)
//line web/template/baseof.qtpl:77
}
//line web/template/baseof.qtpl:77
func Template(p Page) string {
//line web/template/baseof.qtpl:77
qb422016 := qt422016.AcquireByteBuffer()
//line web/template/baseof.qtpl:77
WriteTemplate(qb422016, p)
//line web/template/baseof.qtpl:77
qs422016 := string(qb422016.B)
//line web/template/baseof.qtpl:77
qt422016.ReleaseByteBuffer(qb422016)
//line web/template/baseof.qtpl:77
return qs422016
//line web/template/baseof.qtpl:77
}

84
web/template/editor.qtpl Normal file
View File

@ -0,0 +1,84 @@
{% import (
"time"
) %}
{% code
type PageEditor struct {
*BaseOf
now time.Time
}
func NewPageEditor(base *BaseOf) *PageEditor {
return &PageEditor{
BaseOf: base,
now: time.Now().UTC(),
}
}
%}
{% func (pe *PageEditor) title() %}
Editor — Micropub
{% endfunc %}
{% func (pe *PageEditor) head() %}{% endfunc %}
{% func (pe *PageEditor) body() %}
<form method="post"
action="/api"
target="_self"
accept-charset="utf-8"
enctype="application/x-www-form-urlencoded"
autocomplete="off">
<input type="hidden"
name="h"
value="entry" />
<div>
<label>
{%= pe.t(`Name`) %}
<input type="text"
name="name"
placeholder="Hello, World!" />
</label>
</div>
<div>
<label>
{%= pe.t(`Content`) %}
<textarea name="content"
cols="30"
rows="10"
placeholder="Lorem ipsum dolor sit amet...">
</textarea>
</label>
</div>
<div>
<label>
{%= pe.t(`Published at`) %}
<input type="datetime-local"
name="published"
min="1970-01-01T00:00:00"
value="{%s pe.now.Format(`2006-01-02T15:04:05`) %}"
step="1" />
</label>
</div>
<div>
<label>
{%= pe.t(`Tags`) %}
<input type="text"
name="category"
pattern="[a-zA-Z0-9-, ]"
placeholder="note, 100DaysOfIndieWeb...">
</label>
</div>
<div>
<button type="submit">
{%= pe.t(`Send`) %}
</button>
</div>
</form>
{% endfunc %}

218
web/template/editor.qtpl.go Normal file
View File

@ -0,0 +1,218 @@
// Code generated by qtc from "editor.qtpl". DO NOT EDIT.
// See https://github.com/valyala/quicktemplate for details.
//line web/template/editor.qtpl:1
package template
//line web/template/editor.qtpl:1
import (
"time"
)
//line web/template/editor.qtpl:5
import (
qtio422016 "io"
qt422016 "github.com/valyala/quicktemplate"
)
//line web/template/editor.qtpl:5
var (
_ = qtio422016.Copy
_ = qt422016.AcquireByteBuffer
)
//line web/template/editor.qtpl:6
type PageEditor struct {
*BaseOf
now time.Time
}
func NewPageEditor(base *BaseOf) *PageEditor {
return &PageEditor{
BaseOf: base,
now: time.Now().UTC(),
}
}
//line web/template/editor.qtpl:19
func (pe *PageEditor) streamtitle(qw422016 *qt422016.Writer) {
//line web/template/editor.qtpl:19
qw422016.N().S(`
Editor Micropub
`)
//line web/template/editor.qtpl:21
}
//line web/template/editor.qtpl:21
func (pe *PageEditor) writetitle(qq422016 qtio422016.Writer) {
//line web/template/editor.qtpl:21
qw422016 := qt422016.AcquireWriter(qq422016)
//line web/template/editor.qtpl:21
pe.streamtitle(qw422016)
//line web/template/editor.qtpl:21
qt422016.ReleaseWriter(qw422016)
//line web/template/editor.qtpl:21
}
//line web/template/editor.qtpl:21
func (pe *PageEditor) title() string {
//line web/template/editor.qtpl:21
qb422016 := qt422016.AcquireByteBuffer()
//line web/template/editor.qtpl:21
pe.writetitle(qb422016)
//line web/template/editor.qtpl:21
qs422016 := string(qb422016.B)
//line web/template/editor.qtpl:21
qt422016.ReleaseByteBuffer(qb422016)
//line web/template/editor.qtpl:21
return qs422016
//line web/template/editor.qtpl:21
}
//line web/template/editor.qtpl:23
func (pe *PageEditor) streamhead(qw422016 *qt422016.Writer) {
//line web/template/editor.qtpl:23
}
//line web/template/editor.qtpl:23
func (pe *PageEditor) writehead(qq422016 qtio422016.Writer) {
//line web/template/editor.qtpl:23
qw422016 := qt422016.AcquireWriter(qq422016)
//line web/template/editor.qtpl:23
pe.streamhead(qw422016)
//line web/template/editor.qtpl:23
qt422016.ReleaseWriter(qw422016)
//line web/template/editor.qtpl:23
}
//line web/template/editor.qtpl:23
func (pe *PageEditor) head() string {
//line web/template/editor.qtpl:23
qb422016 := qt422016.AcquireByteBuffer()
//line web/template/editor.qtpl:23
pe.writehead(qb422016)
//line web/template/editor.qtpl:23
qs422016 := string(qb422016.B)
//line web/template/editor.qtpl:23
qt422016.ReleaseByteBuffer(qb422016)
//line web/template/editor.qtpl:23
return qs422016
//line web/template/editor.qtpl:23
}
//line web/template/editor.qtpl:25
func (pe *PageEditor) streambody(qw422016 *qt422016.Writer) {
//line web/template/editor.qtpl:25
qw422016.N().S(`
<form method="post"
action="/api"
target="_self"
accept-charset="utf-8"
enctype="application/x-www-form-urlencoded"
autocomplete="off">
<input type="hidden"
name="h"
value="entry" />
<div>
<label>
`)
//line web/template/editor.qtpl:39
pe.streamt(qw422016, `Name`)
//line web/template/editor.qtpl:39
qw422016.N().S(`
<input type="text"
name="name"
placeholder="Hello, World!" />
</label>
</div>
<div>
<label>
`)
//line web/template/editor.qtpl:48
pe.streamt(qw422016, `Content`)
//line web/template/editor.qtpl:48
qw422016.N().S(`
<textarea name="content"
cols="30"
rows="10"
placeholder="Lorem ipsum dolor sit amet...">
</textarea>
</label>
</div>
<div>
<label>
`)
//line web/template/editor.qtpl:59
pe.streamt(qw422016, `Published at`)
//line web/template/editor.qtpl:59
qw422016.N().S(`
<input type="datetime-local"
name="published"
min="1970-01-01T00:00:00"
value="`)
//line web/template/editor.qtpl:63
qw422016.E().S(pe.now.Format(`2006-01-02T15:04:05`))
//line web/template/editor.qtpl:63
qw422016.N().S(`"
step="1" />
</label>
</div>
<div>
<label>
`)
//line web/template/editor.qtpl:70
pe.streamt(qw422016, `Tags`)
//line web/template/editor.qtpl:70
qw422016.N().S(`
<input type="text"
name="category"
pattern="[a-zA-Z0-9-, ]"
placeholder="note, 100DaysOfIndieWeb...">
</label>
</div>
<div>
<button type="submit">
`)
//line web/template/editor.qtpl:80
pe.streamt(qw422016, `Send`)
//line web/template/editor.qtpl:80
qw422016.N().S(`
</button>
</div>
</form>
`)
//line web/template/editor.qtpl:84
}
//line web/template/editor.qtpl:84
func (pe *PageEditor) writebody(qq422016 qtio422016.Writer) {
//line web/template/editor.qtpl:84
qw422016 := qt422016.AcquireWriter(qq422016)
//line web/template/editor.qtpl:84
pe.streambody(qw422016)
//line web/template/editor.qtpl:84
qt422016.ReleaseWriter(qw422016)
//line web/template/editor.qtpl:84
}
//line web/template/editor.qtpl:84
func (pe *PageEditor) body() string {
//line web/template/editor.qtpl:84
qb422016 := qt422016.AcquireByteBuffer()
//line web/template/editor.qtpl:84
pe.writebody(qb422016)
//line web/template/editor.qtpl:84
qs422016 := string(qb422016.B)
//line web/template/editor.qtpl:84
qt422016.ReleaseByteBuffer(qb422016)
//line web/template/editor.qtpl:84
return qs422016
//line web/template/editor.qtpl:84
}