// Copyright (c) 2015-2021 The Decred developers // Copyright 2013-2014 The btcsuite developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package secp256k1 import ( "encoding/hex" "math/big" ) // References: // [SECG]: Recommended Elliptic Curve Domain Parameters // https://www.secg.org/sec2-v2.pdf // // [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone) // // [BRID]: On Binary Representations of Integers with Digits -1, 0, 1 // (Prodinger, Helmut) // All group operations are performed using Jacobian coordinates. For a given // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) // where x = x1/z1^2 and y = y1/z1^3. // hexToFieldVal converts the passed hex string into a FieldVal and will panic // if there is an error. This is only provided for the hard-coded constants so // errors in the source code can be detected. It will only (and must only) be // called with hard-coded values. func hexToFieldVal(s string) *FieldVal { b, err := hex.DecodeString(s) if err != nil { panic("invalid hex in source file: " + s) } var f FieldVal if overflow := f.SetByteSlice(b); overflow { panic("hex in source file overflows mod P: " + s) } return &f } var ( // Next 6 constants are from Hal Finney's bitcointalk.org post: // https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565 // May he rest in peace. // // They have also been independently derived from the code in the // EndomorphismVectors function in genstatics.go. endomorphismLambda = fromHex("5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72") endomorphismBeta = hexToFieldVal("7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee") endomorphismA1 = fromHex("3086d221a7d46bcde86c90e49284eb15") endomorphismB1 = fromHex("-e4437ed6010e88286f547fa90abfe4c3") endomorphismA2 = fromHex("114ca50f7a8e2f3f657c1108d9d44cfd8") endomorphismB2 = fromHex("3086d221a7d46bcde86c90e49284eb15") // Alternatively, the following parameters are valid as well, however, they // seem to be about 8% slower in practice. // // endomorphismLambda = fromHex("AC9C52B33FA3CF1F5AD9E3FD77ED9BA4A880B9FC8EC739C2E0CFC810B51283CE") // endomorphismBeta = hexToFieldVal("851695D49A83F8EF919BB86153CBCB16630FB68AED0A766A3EC693D68E6AFA40") // endomorphismA1 = fromHex("E4437ED6010E88286F547FA90ABFE4C3") // endomorphismB1 = fromHex("-3086D221A7D46BCDE86C90E49284EB15") // endomorphismA2 = fromHex("3086D221A7D46BCDE86C90E49284EB15") // endomorphismB2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8") ) // JacobianPoint is an element of the group formed by the secp256k1 curve in // Jacobian projective coordinates and thus represents a point on the curve. type JacobianPoint struct { // The X coordinate in Jacobian projective coordinates. The affine point is // X/z^2. X FieldVal // The Y coordinate in Jacobian projective coordinates. The affine point is // Y/z^3. Y FieldVal // The Z coordinate in Jacobian projective coordinates. Z FieldVal } // MakeJacobianPoint returns a Jacobian point with the provided X, Y, and Z // coordinates. func MakeJacobianPoint(x, y, z *FieldVal) JacobianPoint { var p JacobianPoint p.X.Set(x) p.Y.Set(y) p.Z.Set(z) return p } // Set sets the Jacobian point to the provided point. func (p *JacobianPoint) Set(other *JacobianPoint) { p.X.Set(&other.X) p.Y.Set(&other.Y) p.Z.Set(&other.Z) } // ToAffine reduces the Z value of the existing point to 1 effectively // making it an affine coordinate in constant time. The point will be // normalized. func (p *JacobianPoint) ToAffine() { // Inversions are expensive and both point addition and point doubling // are faster when working with points that have a z value of one. So, // if the point needs to be converted to affine, go ahead and normalize // the point itself at the same time as the calculation is the same. var zInv, tempZ FieldVal zInv.Set(&p.Z).Inverse() // zInv = Z^-1 tempZ.SquareVal(&zInv) // tempZ = Z^-2 p.X.Mul(&tempZ) // X = X/Z^2 (mag: 1) p.Y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1) p.Z.SetInt(1) // Z = 1 (mag: 1) // Normalize the x and y values. p.X.Normalize() p.Y.Normalize() } // addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have // z values of 1 and stores the result in the provided result param. That is to // say result = p1 + p2. It performs faster addition than the generic add // routine since less arithmetic is needed due to the ability to avoid the z // value multiplications. // // NOTE: The points must be normalized for this function to return the correct // result. The resulting point will be normalized. func addZ1AndZ2EqualsOne(p1, p2, result *JacobianPoint) { // To compute the point addition efficiently, this implementation splits // the equation into intermediate elements which are used to minimize // the number of field multiplications using the method shown at: // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl // // In particular it performs the calculations using the following: // H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H // // This results in a cost of 4 field multiplications, 2 field squarings, // 6 field additions, and 5 integer multiplications. x1, y1 := &p1.X, &p1.Y x2, y2 := &p2.X, &p2.Y x3, y3, z3 := &result.X, &result.Y, &result.Z // When the x coordinates are the same for two points on the curve, the // y coordinates either must be the same, in which case it is point // doubling, or they are opposite and the result is the point at // infinity per the group law for elliptic curve cryptography. if x1.Equals(x2) { if y1.Equals(y2) { // Since x1 == x2 and y1 == y2, point doubling must be // done, otherwise the addition would end up dividing // by zero. DoubleNonConst(p1, result) return } // Since x1 == x2 and y1 == -y2, the sum is the point at // infinity per the group law. x3.SetInt(0) y3.SetInt(0) z3.SetInt(0) return } // Calculate X3, Y3, and Z3 according to the intermediate elements // breakdown above. var h, i, j, r, v FieldVal var negJ, neg2V, negX3 FieldVal h.Set(x1).Negate(1).Add(x2) // H = X2-X1 (mag: 3) i.SquareVal(&h).MulInt(4) // I = 4*H^2 (mag: 4) j.Mul2(&h, &i) // J = H*I (mag: 1) r.Set(y1).Negate(1).Add(y2).MulInt(2) // r = 2*(Y2-Y1) (mag: 6) v.Mul2(x1, &i) // V = X1*I (mag: 1) negJ.Set(&j).Negate(1) // negJ = -J (mag: 2) neg2V.Set(&v).MulInt(2).Negate(2) // neg2V = -(2*V) (mag: 3) x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6) negX3.Set(x3).Negate(6) // negX3 = -X3 (mag: 7) j.Mul(y1).MulInt(2).Negate(2) // J = -(2*Y1*J) (mag: 3) y3.Set(&v).Add(&negX3).Mul(&r).Add(&j) // Y3 = r*(V-X3)-2*Y1*J (mag: 4) z3.Set(&h).MulInt(2) // Z3 = 2*H (mag: 6) // Normalize the resulting field values to a magnitude of 1 as needed. x3.Normalize() y3.Normalize() z3.Normalize() } // addZ1EqualsZ2 adds two Jacobian points that are already known to have the // same z value and stores the result in the provided result param. That is to // say result = p1 + p2. It performs faster addition than the generic add // routine since less arithmetic is needed due to the known equivalence. // // NOTE: The points must be normalized for this function to return the correct // result. The resulting point will be normalized. func addZ1EqualsZ2(p1, p2, result *JacobianPoint) { // To compute the point addition efficiently, this implementation splits // the equation into intermediate elements which are used to minimize // the number of field multiplications using a slightly modified version // of the method shown at: // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl // // In particular it performs the calculations using the following: // A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, F = X2*B // X3 = D-E-F, Y3 = C*(E-X3)-Y1*(F-E), Z3 = Z1*A // // This results in a cost of 5 field multiplications, 2 field squarings, // 9 field additions, and 0 integer multiplications. x1, y1, z1 := &p1.X, &p1.Y, &p1.Z x2, y2 := &p2.X, &p2.Y x3, y3, z3 := &result.X, &result.Y, &result.Z // When the x coordinates are the same for two points on the curve, the // y coordinates either must be the same, in which case it is point // doubling, or they are opposite and the result is the point at // infinity per the group law for elliptic curve cryptography. if x1.Equals(x2) { if y1.Equals(y2) { // Since x1 == x2 and y1 == y2, point doubling must be // done, otherwise the addition would end up dividing // by zero. DoubleNonConst(p1, result) return } // Since x1 == x2 and y1 == -y2, the sum is the point at // infinity per the group law. x3.SetInt(0) y3.SetInt(0) z3.SetInt(0) return } // Calculate X3, Y3, and Z3 according to the intermediate elements // breakdown above. var a, b, c, d, e, f FieldVal var negX1, negY1, negE, negX3 FieldVal negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2) negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2) a.Set(&negX1).Add(x2) // A = X2-X1 (mag: 3) b.SquareVal(&a) // B = A^2 (mag: 1) c.Set(&negY1).Add(y2) // C = Y2-Y1 (mag: 3) d.SquareVal(&c) // D = C^2 (mag: 1) e.Mul2(x1, &b) // E = X1*B (mag: 1) negE.Set(&e).Negate(1) // negE = -E (mag: 2) f.Mul2(x2, &b) // F = X2*B (mag: 1) x3.Add2(&e, &f).Negate(3).Add(&d) // X3 = D-E-F (mag: 5) negX3.Set(x3).Negate(5).Normalize() // negX3 = -X3 (mag: 1) y3.Set(y1).Mul(f.Add(&negE)).Negate(3) // Y3 = -(Y1*(F-E)) (mag: 4) y3.Add(e.Add(&negX3).Mul(&c)) // Y3 = C*(E-X3)+Y3 (mag: 5) z3.Mul2(z1, &a) // Z3 = Z1*A (mag: 1) // Normalize the resulting field values to a magnitude of 1 as needed. x3.Normalize() y3.Normalize() z3.Normalize() } // addZ2EqualsOne adds two Jacobian points when the second point is already // known to have a z value of 1 (and the z value for the first point is not 1) // and stores the result in the provided result param. That is to say result = // p1 + p2. It performs faster addition than the generic add routine since // less arithmetic is needed due to the ability to avoid multiplications by the // second point's z value. // // NOTE: The points must be normalized for this function to return the correct // result. The resulting point will be normalized. func addZ2EqualsOne(p1, p2, result *JacobianPoint) { // To compute the point addition efficiently, this implementation splits // the equation into intermediate elements which are used to minimize // the number of field multiplications using the method shown at: // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl // // In particular it performs the calculations using the following: // Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2, // I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH // // This results in a cost of 7 field multiplications, 4 field squarings, // 9 field additions, and 4 integer multiplications. x1, y1, z1 := &p1.X, &p1.Y, &p1.Z x2, y2 := &p2.X, &p2.Y x3, y3, z3 := &result.X, &result.Y, &result.Z // When the x coordinates are the same for two points on the curve, the // y coordinates either must be the same, in which case it is point // doubling, or they are opposite and the result is the point at // infinity per the group law for elliptic curve cryptography. Since // any number of Jacobian coordinates can represent the same affine // point, the x and y values need to be converted to like terms. Due to // the assumption made for this function that the second point has a z // value of 1 (z2=1), the first point is already "converted". var z1z1, u2, s2 FieldVal z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1) u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1) s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1) if x1.Equals(&u2) { if y1.Equals(&s2) { // Since x1 == x2 and y1 == y2, point doubling must be // done, otherwise the addition would end up dividing // by zero. DoubleNonConst(p1, result) return } // Since x1 == x2 and y1 == -y2, the sum is the point at // infinity per the group law. x3.SetInt(0) y3.SetInt(0) z3.SetInt(0) return } // Calculate X3, Y3, and Z3 according to the intermediate elements // breakdown above. var h, hh, i, j, r, rr, v FieldVal var negX1, negY1, negX3 FieldVal negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2) h.Add2(&u2, &negX1) // H = U2-X1 (mag: 3) hh.SquareVal(&h) // HH = H^2 (mag: 1) i.Set(&hh).MulInt(4) // I = 4 * HH (mag: 4) j.Mul2(&h, &i) // J = H*I (mag: 1) negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2) r.Set(&s2).Add(&negY1).MulInt(2) // r = 2*(S2-Y1) (mag: 6) rr.SquareVal(&r) // rr = r^2 (mag: 1) v.Mul2(x1, &i) // V = X1*I (mag: 1) x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4) x3.Add(&rr) // X3 = r^2+X3 (mag: 5) negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6) y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3) y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4) z3.Add2(z1, &h).Square() // Z3 = (Z1+H)^2 (mag: 1) z3.Add(z1z1.Add(&hh).Negate(2)) // Z3 = Z3-(Z1Z1+HH) (mag: 4) // Normalize the resulting field values to a magnitude of 1 as needed. x3.Normalize() y3.Normalize() z3.Normalize() } // addGeneric adds two Jacobian points without any assumptions about the z // values of the two points and stores the result in the provided result param. // That is to say result = p1 + p2. It is the slowest of the add routines due // to requiring the most arithmetic. // // NOTE: The points must be normalized for this function to return the correct // result. The resulting point will be normalized. func addGeneric(p1, p2, result *JacobianPoint) { // To compute the point addition efficiently, this implementation splits // the equation into intermediate elements which are used to minimize // the number of field multiplications using the method shown at: // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl // // In particular it performs the calculations using the following: // Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2 // S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1) // V = U1*I // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H // // This results in a cost of 11 field multiplications, 5 field squarings, // 9 field additions, and 4 integer multiplications. x1, y1, z1 := &p1.X, &p1.Y, &p1.Z x2, y2, z2 := &p2.X, &p2.Y, &p2.Z x3, y3, z3 := &result.X, &result.Y, &result.Z // When the x coordinates are the same for two points on the curve, the // y coordinates either must be the same, in which case it is point // doubling, or they are opposite and the result is the point at // infinity. Since any number of Jacobian coordinates can represent the // same affine point, the x and y values need to be converted to like // terms. var z1z1, z2z2, u1, u2, s1, s2 FieldVal z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1) z2z2.SquareVal(z2) // Z2Z2 = Z2^2 (mag: 1) u1.Set(x1).Mul(&z2z2).Normalize() // U1 = X1*Z2Z2 (mag: 1) u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1) s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1) s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1) if u1.Equals(&u2) { if s1.Equals(&s2) { // Since x1 == x2 and y1 == y2, point doubling must be // done, otherwise the addition would end up dividing // by zero. DoubleNonConst(p1, result) return } // Since x1 == x2 and y1 == -y2, the sum is the point at // infinity per the group law. x3.SetInt(0) y3.SetInt(0) z3.SetInt(0) return } // Calculate X3, Y3, and Z3 according to the intermediate elements // breakdown above. var h, i, j, r, rr, v FieldVal var negU1, negS1, negX3 FieldVal negU1.Set(&u1).Negate(1) // negU1 = -U1 (mag: 2) h.Add2(&u2, &negU1) // H = U2-U1 (mag: 3) i.Set(&h).MulInt(2).Square() // I = (2*H)^2 (mag: 2) j.Mul2(&h, &i) // J = H*I (mag: 1) negS1.Set(&s1).Negate(1) // negS1 = -S1 (mag: 2) r.Set(&s2).Add(&negS1).MulInt(2) // r = 2*(S2-S1) (mag: 6) rr.SquareVal(&r) // rr = r^2 (mag: 1) v.Mul2(&u1, &i) // V = U1*I (mag: 1) x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4) x3.Add(&rr) // X3 = r^2+X3 (mag: 5) negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6) y3.Mul2(&s1, &j).MulInt(2).Negate(2) // Y3 = -(2*S1*J) (mag: 3) y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4) z3.Add2(z1, z2).Square() // Z3 = (Z1+Z2)^2 (mag: 1) z3.Add(z1z1.Add(&z2z2).Negate(2)) // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4) z3.Mul(&h) // Z3 = Z3*H (mag: 1) // Normalize the resulting field values to a magnitude of 1 as needed. x3.Normalize() y3.Normalize() z3.Normalize() } // AddNonConst adds the passed Jacobian points together and stores the result in // the provided result param in *non-constant* time. // // NOTE: The points must be normalized for this function to return the correct // result. The resulting point will be normalized. func AddNonConst(p1, p2, result *JacobianPoint) { // A point at infinity is the identity according to the group law for // elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P. if (p1.X.IsZero() && p1.Y.IsZero()) || p1.Z.IsZero() { result.Set(p2) return } if (p2.X.IsZero() && p2.Y.IsZero()) || p2.Z.IsZero() { result.Set(p1) return } // Faster point addition can be achieved when certain assumptions are // met. For example, when both points have the same z value, arithmetic // on the z values can be avoided. This section thus checks for these // conditions and calls an appropriate add function which is accelerated // by using those assumptions. isZ1One := p1.Z.IsOne() isZ2One := p2.Z.IsOne() switch { case isZ1One && isZ2One: addZ1AndZ2EqualsOne(p1, p2, result) return case p1.Z.Equals(&p2.Z): addZ1EqualsZ2(p1, p2, result) return case isZ2One: addZ2EqualsOne(p1, p2, result) return } // None of the above assumptions are true, so fall back to generic // point addition. addGeneric(p1, p2, result) } // doubleZ1EqualsOne performs point doubling on the passed Jacobian point when // the point is already known to have a z value of 1 and stores the result in // the provided result param. That is to say result = 2*p. It performs faster // point doubling than the generic routine since less arithmetic is needed due // to the ability to avoid multiplication by the z value. // // NOTE: The resulting point will be normalized. func doubleZ1EqualsOne(p, result *JacobianPoint) { // This function uses the assumptions that z1 is 1, thus the point // doubling formulas reduce to: // // X3 = (3*X1^2)^2 - 8*X1*Y1^2 // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4 // Z3 = 2*Y1 // // To compute the above efficiently, this implementation splits the // equation into intermediate elements which are used to minimize the // number of field multiplications in favor of field squarings which // are roughly 35% faster than field multiplications with the current // implementation at the time this was written. // // This uses a slightly modified version of the method shown at: // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl // // In particular it performs the calculations using the following: // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C) // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C // Z3 = 2*Y1 // // This results in a cost of 1 field multiplication, 5 field squarings, // 6 field additions, and 5 integer multiplications. x1, y1 := &p.X, &p.Y x3, y3, z3 := &result.X, &result.Y, &result.Z var a, b, c, d, e, f FieldVal z3.Set(y1).MulInt(2) // Z3 = 2*Y1 (mag: 2) a.SquareVal(x1) // A = X1^2 (mag: 1) b.SquareVal(y1) // B = Y1^2 (mag: 1) c.SquareVal(&b) // C = B^2 (mag: 1) b.Add(x1).Square() // B = (X1+B)^2 (mag: 1) d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3) d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8) e.Set(&a).MulInt(3) // E = 3*A (mag: 3) f.SquareVal(&e) // F = E^2 (mag: 1) x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17) x3.Add(&f) // X3 = F+X3 (mag: 18) f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1) y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9) y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10) // Normalize the field values back to a magnitude of 1. x3.Normalize() y3.Normalize() z3.Normalize() } // doubleGeneric performs point doubling on the passed Jacobian point without // any assumptions about the z value and stores the result in the provided // result param. That is to say result = 2*p. It is the slowest of the point // doubling routines due to requiring the most arithmetic. // // NOTE: The resulting point will be normalized. func doubleGeneric(p, result *JacobianPoint) { // Point doubling formula for Jacobian coordinates for the secp256k1 // curve: // // X3 = (3*X1^2)^2 - 8*X1*Y1^2 // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4 // Z3 = 2*Y1*Z1 // // To compute the above efficiently, this implementation splits the // equation into intermediate elements which are used to minimize the // number of field multiplications in favor of field squarings which // are roughly 35% faster than field multiplications with the current // implementation at the time this was written. // // This uses a slightly modified version of the method shown at: // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l // // In particular it performs the calculations using the following: // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C) // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C // Z3 = 2*Y1*Z1 // // This results in a cost of 1 field multiplication, 5 field squarings, // 6 field additions, and 5 integer multiplications. x1, y1, z1 := &p.X, &p.Y, &p.Z x3, y3, z3 := &result.X, &result.Y, &result.Z var a, b, c, d, e, f FieldVal z3.Mul2(y1, z1).MulInt(2) // Z3 = 2*Y1*Z1 (mag: 2) a.SquareVal(x1) // A = X1^2 (mag: 1) b.SquareVal(y1) // B = Y1^2 (mag: 1) c.SquareVal(&b) // C = B^2 (mag: 1) b.Add(x1).Square() // B = (X1+B)^2 (mag: 1) d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3) d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8) e.Set(&a).MulInt(3) // E = 3*A (mag: 3) f.SquareVal(&e) // F = E^2 (mag: 1) x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17) x3.Add(&f) // X3 = F+X3 (mag: 18) f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1) y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9) y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10) // Normalize the field values back to a magnitude of 1. x3.Normalize() y3.Normalize() z3.Normalize() } // DoubleNonConst doubles the passed Jacobian point and stores the result in the // provided result parameter in *non-constant* time. // // NOTE: The point must be normalized for this function to return the correct // result. The resulting point will be normalized. func DoubleNonConst(p, result *JacobianPoint) { // Doubling a point at infinity is still infinity. if p.Y.IsZero() || p.Z.IsZero() { result.X.SetInt(0) result.Y.SetInt(0) result.Z.SetInt(0) return } // Slightly faster point doubling can be achieved when the z value is 1 // by avoiding the multiplication on the z value. This section calls // a point doubling function which is accelerated by using that // assumption when possible. if p.Z.IsOne() { doubleZ1EqualsOne(p, result) return } // Fall back to generic point doubling which works with arbitrary z // values. doubleGeneric(p, result) } // splitK returns a balanced length-two representation of k and their signs. // This is algorithm 3.74 from [GECC]. // // One thing of note about this algorithm is that no matter what c1 and c2 are, // the final equation of k = k1 + k2 * lambda (mod n) will hold. This is // provable mathematically due to how a1/b1/a2/b2 are computed. // // c1 and c2 are chosen to minimize the max(k1,k2). func splitK(k []byte) ([]byte, []byte, int, int) { // All math here is done with big.Int, which is slow. // At some point, it might be useful to write something similar to // FieldVal but for N instead of P as the prime field if this ends up // being a bottleneck. bigIntK := new(big.Int) c1, c2 := new(big.Int), new(big.Int) tmp1, tmp2 := new(big.Int), new(big.Int) k1, k2 := new(big.Int), new(big.Int) bigIntK.SetBytes(k) // c1 = round(b2 * k / n) from step 4. // Rounding isn't really necessary and costs too much, hence skipped c1.Mul(endomorphismB2, bigIntK) c1.Div(c1, curveParams.N) // c2 = round(b1 * k / n) from step 4 (sign reversed to optimize one step) // Rounding isn't really necessary and costs too much, hence skipped c2.Mul(endomorphismB1, bigIntK) c2.Div(c2, curveParams.N) // k1 = k - c1 * a1 - c2 * a2 from step 5 (note c2's sign is reversed) tmp1.Mul(c1, endomorphismA1) tmp2.Mul(c2, endomorphismA2) k1.Sub(bigIntK, tmp1) k1.Add(k1, tmp2) // k2 = - c1 * b1 - c2 * b2 from step 5 (note c2's sign is reversed) tmp1.Mul(c1, endomorphismB1) tmp2.Mul(c2, endomorphismB2) k2.Sub(tmp2, tmp1) // Note Bytes() throws out the sign of k1 and k2. This matters // since k1 and/or k2 can be negative. Hence, we pass that // back separately. return k1.Bytes(), k2.Bytes(), k1.Sign(), k2.Sign() } // nafScalar represents a positive integer up to a maximum value of 2^256 - 1 // encoded in non-adjacent form. // // NAF is a signed-digit representation where each digit can be +1, 0, or -1. // // In order to efficiently encode that information, this type uses two arrays, a // "positive" array where set bits represent the +1 signed digits and a // "negative" array where set bits represent the -1 signed digits. 0 is // represented by neither array having a bit set in that position. // // The Pos and Neg methods return the aforementioned positive and negative // arrays, respectively. type nafScalar struct { // pos houses the positive portion of the representation. An additional // byte is required for the positive portion because the NAF encoding can be // up to 1 bit longer than the normal binary encoding of the value. // // neg houses the negative portion of the representation. Even though the // additional byte is not required for the negative portion, since it can // never exceed the length of the normal binary encoding of the value, // keeping the same length for positive and negative portions simplifies // working with the representation and allows extra conditional branches to // be avoided. // // start and end specify the starting and ending index to use within the pos // and neg arrays, respectively. This allows fixed size arrays to be used // versus needing to dynamically allocate space on the heap. // // NOTE: The fields are defined in the order that they are to minimize the // padding on 32-bit and 64-bit platforms. pos [33]byte start, end uint8 neg [33]byte } // Pos returns the bytes of the encoded value with bits set in the positions // that represent a signed digit of +1. func (s *nafScalar) Pos() []byte { return s.pos[s.start:s.end] } // Neg returns the bytes of the encoded value with bits set in the positions // that represent a signed digit of -1. func (s *nafScalar) Neg() []byte { return s.neg[s.start:s.end] } // naf takes a positive integer up to a maximum value of 2^256 - 1 and returns // its non-adjacent form (NAF), which is a unique signed-digit representation // such that no two consecutive digits are nonzero. See the documentation for // the returned type for details on how the representation is encoded // efficiently and how to interpret it // // NAF is useful in that it has the fewest nonzero digits of any signed digit // representation, only 1/3rd of its digits are nonzero on average, and at least // half of the digits will be 0. // // The aforementioned properties are particularly beneficial for optimizing // elliptic curve point multiplication because they effectively minimize the // number of required point additions in exchange for needing to perform a mix // of fewer point additions and subtractions and possibly one additional point // doubling. This is an excellent tradeoff because subtraction of points has // the same computational complexity as addition of points and point doubling is // faster than both. func naf(k []byte) nafScalar { // Strip leading zero bytes. for len(k) > 0 && k[0] == 0x00 { k = k[1:] } // The non-adjacent form (NAF) of a positive integer k is an expression // k = ∑_(i=0, l-1) k_i * 2^i where k_i ∈ {0,±1}, k_(l-1) != 0, and no two // consecutive digits k_i are nonzero. // // The traditional method of computing the NAF of a positive integer is // given by algorithm 3.30 in [GECC]. It consists of repeatedly dividing k // by 2 and choosing the remainder so that the quotient (k−r)/2 is even // which ensures the next NAF digit is 0. This requires log_2(k) steps. // // However, in [BRID], Prodinger notes that a closed form expression for the // NAF representation is the bitwise difference 3k/2 - k/2. This is more // efficient as it can be computed in O(1) versus the O(log(n)) of the // traditional approach. // // The following code makes use of that formula to compute the NAF more // efficiently. // // To understand the logic here, observe that the only way the NAF has a // nonzero digit at a given bit is when either 3k/2 or k/2 has a bit set in // that position, but not both. In other words, the result of a bitwise // xor. This can be seen simply by considering that when the bits are the // same, the subtraction is either 0-0 or 1-1, both of which are 0. // // Further, observe that the "+1" digits in the result are contributed by // 3k/2 while the "-1" digits are from k/2. So, they can be determined by // taking the bitwise and of each respective value with the result of the // xor which identifies which bits are nonzero. // // Using that information, this loops backwards from the least significant // byte to the most significant byte while performing the aforementioned // calculations by propagating the potential carry and high order bit from // the next word during the right shift. kLen := len(k) var result nafScalar var carry uint8 for byteNum := kLen - 1; byteNum >= 0; byteNum-- { // Calculate k/2. Notice the carry from the previous word is added and // the low order bit from the next word is shifted in accordingly. kc := uint16(k[byteNum]) + uint16(carry) var nextWord uint8 if byteNum > 0 { nextWord = k[byteNum-1] } halfK := kc>>1 | uint16(nextWord<<7) // Calculate 3k/2 and determine the non-zero digits in the result. threeHalfK := kc + halfK nonZeroResultDigits := threeHalfK ^ halfK // Determine the signed digits {0, ±1}. result.pos[byteNum+1] = uint8(threeHalfK & nonZeroResultDigits) result.neg[byteNum+1] = uint8(halfK & nonZeroResultDigits) // Propagate the potential carry from the 3k/2 calculation. carry = uint8(threeHalfK >> 8) } result.pos[0] = carry // Set the starting and ending positions within the fixed size arrays to // identify the bytes that are actually used. This is important since the // encoding is big endian and thus trailing zero bytes changes its value. result.start = 1 - carry result.end = uint8(kLen + 1) return result } // ScalarMultNonConst multiplies k*P where k is a big endian integer modulo the // curve order and P is a point in Jacobian projective coordinates and stores // the result in the provided Jacobian point. // // NOTE: The point must be normalized for this function to return the correct // result. The resulting point will be normalized. func ScalarMultNonConst(k *ModNScalar, point, result *JacobianPoint) { // Decompose K into k1 and k2 in order to halve the number of EC ops. // See Algorithm 3.74 in [GECC]. kBytes := k.Bytes() k1, k2, signK1, signK2 := splitK(kBytes[:]) zeroArray32(&kBytes) // The main equation here to remember is: // k * P = k1 * P + k2 * ϕ(P) // // P1 below is P in the equation, P2 below is ϕ(P) in the equation p1, p1Neg := new(JacobianPoint), new(JacobianPoint) p1.Set(point) p1Neg.Set(p1) p1Neg.Y.Negate(1).Normalize() // NOTE: ϕ(x,y) = (βx,y). The Jacobian z coordinates are the same, so this // math goes through. p2, p2Neg := new(JacobianPoint), new(JacobianPoint) p2.Set(p1) p2.X.Mul(endomorphismBeta).Normalize() p2Neg.Set(p2) p2Neg.Y.Negate(1).Normalize() // Flip the positive and negative values of the points as needed // depending on the signs of k1 and k2. As mentioned in the equation // above, each of k1 and k2 are multiplied by the respective point. // Since -k * P is the same thing as k * -P, and the group law for // elliptic curves states that P(x, y) = -P(x, -y), it's faster and // simplifies the code to just make the point negative. if signK1 == -1 { p1, p1Neg = p1Neg, p1 } if signK2 == -1 { p2, p2Neg = p2Neg, p2 } // NAF versions of k1 and k2 should have a lot more zeros. // // The Pos version of the bytes contain the +1s and the Neg versions // contain the -1s. k1NAF, k2NAF := naf(k1), naf(k2) k1PosNAF, k1NegNAF := k1NAF.Pos(), k1NAF.Neg() k2PosNAF, k2NegNAF := k2NAF.Pos(), k2NAF.Neg() k1Len, k2Len := len(k1PosNAF), len(k2PosNAF) m := k1Len if m < k2Len { m = k2Len } // Point Q = ∞ (point at infinity). var q JacobianPoint // Add left-to-right using the NAF optimization. See algorithm 3.77 // from [GECC]. This should be faster overall since there will be a lot // more instances of 0, hence reducing the number of Jacobian additions // at the cost of 1 possible extra doubling. for i := 0; i < m; i++ { // Since k1 and k2 are potentially different lengths and the calculation // is being done left to right, pad the front of the shorter one with // 0s. var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte if i >= m-k1Len { k1BytePos, k1ByteNeg = k1PosNAF[i-(m-k1Len)], k1NegNAF[i-(m-k1Len)] } if i >= m-k2Len { k2BytePos, k2ByteNeg = k2PosNAF[i-(m-k2Len)], k2NegNAF[i-(m-k2Len)] } for bit, mask := 7, uint8(1<<7); bit >= 0; bit, mask = bit-1, mask>>1 { // Q = 2 * Q DoubleNonConst(&q, &q) // Add or subtract the first point based on the signed digit of the // NAF representation of k1 at this bit position. // // +1: Q = Q + p1 // -1: Q = Q - p1 // 0: Q = Q (no change) if k1BytePos&mask == mask { AddNonConst(&q, p1, &q) } else if k1ByteNeg&mask == mask { AddNonConst(&q, p1Neg, &q) } // Add or subtract the second point based on the signed digit of the // NAF representation of k2 at this bit position. // // +1: Q = Q + p2 // -1: Q = Q - p2 // 0: Q = Q (no change) if k2BytePos&mask == mask { AddNonConst(&q, p2, &q) } else if k2ByteNeg&mask == mask { AddNonConst(&q, p2Neg, &q) } } } result.Set(&q) } // ScalarBaseMultNonConst multiplies k*G where G is the base point of the group // and k is a big endian integer. The result is stored in Jacobian coordinates // (x1, y1, z1). // // NOTE: The resulting point will be normalized. func ScalarBaseMultNonConst(k *ModNScalar, result *JacobianPoint) { bytePoints := s256BytePoints() // Point Q = ∞ (point at infinity). var q JacobianPoint // curve.bytePoints has all 256 byte points for each 8-bit window. The // strategy is to add up the byte points. This is best understood by // expressing k in base-256 which it already sort of is. Each "digit" in // the 8-bit window can be looked up using bytePoints and added together. var pt JacobianPoint for i, byteVal := range k.Bytes() { p := bytePoints[i][byteVal] pt.X.Set(&p[0]) pt.Y.Set(&p[1]) pt.Z.SetInt(1) AddNonConst(&q, &pt, &q) } result.Set(&q) } // isOnCurve returns whether or not the affine point (x,y) is on the curve. func isOnCurve(fx, fy *FieldVal) bool { // Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7 y2 := new(FieldVal).SquareVal(fy).Normalize() result := new(FieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize() return y2.Equals(result) } // DecompressY attempts to calculate the Y coordinate for the given X coordinate // such that the result pair is a point on the secp256k1 curve. It adjusts Y // based on the desired oddness and returns whether or not it was successful // since not all X coordinates are valid. // // The magnitude of the provided X coordinate field val must be a max of 8 for a // correct result. The resulting Y field val will have a max magnitude of 2. func DecompressY(x *FieldVal, odd bool, resultY *FieldVal) bool { // The curve equation for secp256k1 is: y^2 = x^3 + 7. Thus // y = +-sqrt(x^3 + 7). // // The x coordinate must be invalid if there is no square root for the // calculated rhs because it means the X coordinate is not for a point on // the curve. x3PlusB := new(FieldVal).SquareVal(x).Mul(x).AddInt(7) if hasSqrt := resultY.SquareRootVal(x3PlusB); !hasSqrt { return false } if resultY.Normalize().IsOdd() != odd { resultY.Negate(1) } return true }